(S)-Fmoc-2-amino-5,5,5-trifluoropentanoic acid
Need Assistance?
  • US & Canada:
    +
  • UK: +

(S)-Fmoc-2-amino-5,5,5-trifluoropentanoic acid

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fluorinated amino acids
Catalog number
BAT-008256
CAS number
144207-41-0
Molecular Formula
C20H18F3NO4
Molecular Weight
393.36
IUPAC Name
2-(9H-fluoren-9-ylmethoxycarbonylamino)-5,5,5-trifluoropentanoic acid
Synonyms
2-(2-((9H-fluoren-9-yl)oxy)acetamido)-5,5,5-trifluoropentanoic acid
InChI
InChI=1S/C20H18F3NO4/c21-20(22,23)10-9-17(18(25)26)24-19(27)28-11-16-14-7-3-1-5-12(14)13-6-2-4-8-15(13)16/h1-8,16-17H,9-11H2,(H,24,27)(H,25,26)/t17-/m0/s1
InChI Key
KMHCZJHUIDEERF-KRWDZBQOSA-N
Canonical SMILES
C1=CC=C2C(=C1)C(C3=CC=CC=C32)COC(=O)NC(CCC(F)(F)F)C(=O)O
1. Fluoro ketone inhibitors of hydrolytic enzymes
M H Gelb, J P Svaren, R H Abeles Biochemistry. 1985 Apr 9;24(8):1813-7. doi: 10.1021/bi00329a001.
The use of fluoro ketones as inhibitors of hydrolytic enzymes has been investigated. The acetylcholine analogues 6,6-dimethyl-1,1,1-trifluoro-2-heptanone and 3,3-difluoro-6,6-dimethyl-2-heptanone are inhibitors of acetylcholinesterase with Ki values of 16 X 10(-9) M and 1.6 X 10(-9) M, respectively. These fluoro ketones are 10(4)-10(5) times better as inhibitors than the corresponding methyl ketone. Since nucleophiles readily add to fluoro ketones, it is likely that these compounds inhibit acetylcholinesterase by formation of a stable hemiketal with the active-site serine residue. Fluoro ketone substrate analogues are also inhibitors of zinc metallo- and aspartylproteases. 2-Benzyl-4-oxo-5,5,5-trifluoropentanoic acid is an inhibitor of carboxypeptidase A (Ki = 2 X 10(-7) M). Trifluoromethyl ketone dipeptide analogues are good inhibitors of angiotensin converting enzyme. An analogue of pepstatin that contains a difluorostatone residue in place of statine has been prepared and found to be an extremely potent inhibitor of pepsin (Ki = 6 X 10(-11) M). The hydrated ketones are probably the inhibitory species since they are structural mimics of the tetrahedral intermediate that forms during the hydrolysis of peptide substrates.
2. alpha-Bromo ketone substrate analogues are powerful reversible inhibitors of carboxypeptidase A
R E Galardy, Z P Kortylewicz Biochemistry. 1985 Dec 17;24(26):7607-12. doi: 10.1021/bi00347a016.
The aldehyde (RS)-2-benzyl-4-oxobutanoic acid, which is 25% hydrated at pH 7.5, has recently been shown to be a strong reversible competitive inhibitor of carboxypeptidase A [Ki = 0.48 nM; Galardy, R. E., & Kortylewicz, Z. P. (1984) Biochemistry 23, 2083-2087]. The ketone analogue of this aldehyde (RS)-2-benzyl-4-oxopentanoic acid (IV) is not detectably hydrated under the same conditions and is 1500-fold less potent (Ki = 730 microM). The ketone homologue (RS)-2-benzyl-5-oxohexanoic acid (XIII) is also a weak inhibitor (Ki = 1.3 mM). The alpha-monobrominated derivatives of these two ketones are, however, strong competitive inhibitors with Ki's of 0.57 microM and 1.3 microM, respectively. Oximes derived from the aldehyde, the ketones IV and XIII, and a homologue of the aldehyde are weak inhibitors with Ki's ranging from 480 to 7900 microM. The inhibition of carboxypeptidase A by the alpha-monobrominated ketones is reversible and independent of the time (up to 6 h) of incubation of enzyme and inhibitor together. Bromoacetone at a concentration of 30 mM does not inhibit carboxypeptidase A. Incubation of an equimolar mixture of 2-benzyl-4-bromo-5-oxohexanoic acid (XV) and enzyme for 1 h led to the recovery of 82% of XV, demonstrating that it is the major species reversibly bound during assay of inhibition. Taken together, these results indicate that tight binding of carbonyl inhibitors to carboxypeptidase A requires specific binding of inhibitor functional groups such as benzyl and an electrophilic carbonyl carbon such as that of an alpha-bromo ketone or aliphatic aldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)
3. On the coordination of inhibitors to the metal ion of carboxypeptidase A. A 113Cd and 31P NMR study
P Gettins J Biol Chem. 1986 Nov 25;261(33):15513-8.
113Cd and 31P NMR have been used to investigate the interactions of inhibitors with the metal ion of bovine carboxypeptidase A, using 113Cd as a replacement for the native zinc atom. In the absence of inhibitor and over the pH range 6-9, no 113Cd resonance is visible at room temperature. Upon lowering the temperature to 270 K, however, a broad resonance can be seen at 120 ppm. These results are discussed in terms of possible sources for this resonance modulation. Binding of low molecular weight inhibitors containing potential metal-coordinating moieties results in the appearance of a sharp 113Cd resonance. These inhibitors all bind to the metal ion, a fact which is reflected in the chemical shift of the cadmium resonance and, for L-phenylalanine phosphoramidate phenyl ester, by two-bond 113Cd-31P spin-spin coupling of 30 Hz in the 31P resonance of the bound inhibitor. For inhibitors that coordinate to the metal ion via oxygen, the 113Cd chemical shift is in the range 127-137 ppm, whereas for sulfur coordination there is a downfield shift of approximately 210 ppm. The complexes of 113Cd-substituted carboxypeptidase A with the D and L isomers of thiolactic acid are distinguished by a difference of 11 ppm in the chemical shift of their cadmium resonances. The enzyme complex formed with the macromolecular inhibitor from potatoes, which fills the S1 and S2 subsites, shows one or possibly two closely spaced broad 113Cd resonances. Both the chemical shift and the line width of the 113Cd resonances of the [113Cd]carboxypeptidase-inhibitor complexes give valuable structural and dynamic information about the enzyme active site.
Online Inquiry
Verification code
Inquiry Basket