SDGRG
Need Assistance?
  • US & Canada:
    +
  • UK: +

SDGRG

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

SDGRG has been used as a control peptide which does not affect integrin function, in various studies.

Category
Others
Catalog number
BAT-010137
CAS number
108608-63-5
Molecular Formula
C17H30N8O9
Molecular Weight
490.5
SDGRG
IUPAC Name
(3S)-3-[[(2S)-2-amino-3-hydroxypropanoyl]amino]-4-[[2-[[(2S)-1-(carboxymethylamino)-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-4-oxobutanoic acid
Synonyms
S-D-G-R-G; H-SER-ASP-GLY-ARG-GLY-OH
Appearance
White or Off-white Lyophilized Powder
Purity
>95%
Density
1.66±0.1 g/cm3(Predicted)
Sequence
Ser-Asp-Gly-Arg-Gly
Storage
Store at -20°C
InChI
InChI=1S/C17H30N8O9/c18-8(7-26)14(32)25-10(4-12(28)29)16(34)22-5-11(27)24-9(2-1-3-21-17(19)20)15(33)23-6-13(30)31/h8-10,26H,1-7,18H2,(H,22,34)(H,23,33)(H,24,27)(H,25,32)(H,28,29)(H,30,31)(H4,19,20,21)/t8-,9-,10-/m0/s1
InChI Key
UVLWLKCNNYTXDT-GUBZILKMSA-N
Canonical SMILES
C(CC(C(=O)NCC(=O)O)NC(=O)CNC(=O)C(CC(=O)O)NC(=O)C(CO)N)CN=C(N)N
1. Resolving Power and Collision Cross Section Measurement Accuracy of a Prototype High-Resolution Ion Mobility Platform Incorporating Structures for Lossless Ion Manipulation
Jody C May, Katrina L Leaptrot, Bailey S Rose, Kelly L Wormwood Moser, Liulin Deng, Laura Maxon, Daniel DeBord, John A McLean J Am Soc Mass Spectrom. 2021 Apr 7;32(4):1126-1137. doi: 10.1021/jasms.1c00056. Epub 2021 Mar 18.
A production prototype structures for lossless ion manipulation ion mobility (SLIM IM) platform interfaced to a commercial high-resolution mass spectrometer (MS) is described. The SLIM IM implements the traveling wave ion mobility technique across a ~13m path length for high-resolution IM (HRIM) separations. The resolving power (CCS/ΔCCS) of the SLIM IM stage was benchmarked across various parameters (traveling wave speeds, amplitudes, and waveforms), and results indicated that resolving powers in excess of 200 can be accessed for a broad range of masses. For several cases, resolving powers greater than 300 were achieved, notably under wave conditions where ions transition from a nonselective "surfing" motion to a mobility-selective ion drift, that corresponded to ion speeds approximately 30-70% of the traveling wave speed. The separation capabilities were evaluated on a series of isomeric and isobaric compounds that cannot be resolved by MS alone, including reversed-sequence peptides (SDGRG and GRGDS), triglyceride double-bond positional isomers (TG 3, 6, 9 and TG 6, 9, 12), trisaccharides (melezitose, raffinose, isomaltotriose, and maltotriose), and ganglioside lipids (GD1b and GD1a). The SLIM IM platform resolved the corresponding isomeric mixtures, which were unresolvable using the standard resolution of a drift-tube instrument (~50). In general, the SLIM IM-MS platform is capable of resolving peaks separated by as little as ~0.6% without the need to target a specific separation window or drift time. Low CCS measurement biases 200), demonstrating that this instrument is well-suited for broadband HRIM separations important in global untargeted applications.
2. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation
M H M Hessel, D E Atsma, E J M van der Valk, W H Bax, M J Schalij, A van der Laarse Pflugers Arch. 2008 Mar;455(6):979-86. doi: 10.1007/s00424-007-0354-8. Epub 2007 Oct 2.
Elevated cardiac troponin-I (cTnI) levels have been demonstrated in serum of patients without acute coronary syndromes, potentially via a stretch-related process. We hypothesize that this cTnI release from viable cardiomyocytes is mediated by stimulation of stretch-responsive integrins. Cultured cardiomyocytes were treated with (1) Gly-Arg-Gly-Asp-Ser (GRGDS, n = 22) to stimulate integrins, (2) Ser-Asp-Gly-Arg-Gly (SDGRG, n = 8) that does not stimulate integrins, or (3) phosphate-buffered saline (control, n = 38). Cells and media were analyzed for intact cTnI, cTnI degradation products, and matrix metalloproteinase (MMP)-2. Cell viability was examined by assay of lactate dehydrogenase (LDH) activity and by nuclear staining with propidium iodide. GRGDS-induced integrin stimulation caused increased release of intact cTnI (9.6 +/- 3.0%) as compared to SDGRG-treated cardiomyocytes (4.5 +/- 0.8%, p < 0.001) and control (3.0 +/- 3.4%, p < 0.001). LDH release from GRGDS-treated cardiomyocytes (15.9 +/- 3.8%) equalled that from controls (15.2 +/- 2.3%, p = n.s.), indicating that the GRGDS-induced release of cTnI is not due to cell necrosis. This result was confirmed by nuclear staining with propidium iodide. Integrin stimulation increased the intracellular and extracellular MMP2 activity as compared to controls (both p < 0.05). However, despite the ability of active MMP2 to degrade cTnI in vitro, integrin stimulation in cardiomyocytes was not associated with cTnI degradation. The present study demonstrates that intact cTnI can be released from viable cardiomyocytes by stimulation of stretch-responsive integrins.
3. Oversampling Selective Accumulation Trapped Ion Mobility Spectrometry Coupled to FT-ICR MS: Fundamentals and Applications
Paolo Benigni, Francisco Fernandez-Lima Anal Chem. 2016 Jul 19;88(14):7404-12. doi: 10.1021/acs.analchem.6b01946. Epub 2016 Jul 6.
In the present paper, we describe the fundamentals and analytical advantages of Oversampling Selective Accumulation Trapped Ion Mobility Spectrometry (OSA-TIMS) when coupled to ultrahigh resolution mass analyzers (e.g., FT-ICR MS). During TIMS analysis, ion packages are spatially resolved based on their mobilities along the TIMS analyzer axis and multiple strategies can be utilized during the trapping and elution of the ion population of interest. In the case of OSA-TIMS-FT-ICR MS, the TIMS operation sequence, trapping conditions, and operations are optimized to increase the signal-to-noise and the number of points across the mobility domain, which leads to more accurate mobility and mass measurements. Experimental results show that accurate ion-neutral collision cross sections (<1%) can be measured using OSA-TIMS-FT-ICR MS with high mobility resolving powers (RIMS up to 250), high mass accuracy (<1 ppm), and ultrahigh mass resolution (RMS up to 600-1200k at m/z 400) in a single analysis. The analytical advantages of OSA-TIMS over SA-TIMS were illustrated for the analysis of structural peptide isomers (SDGRG and GRGDS [M + H](+)), conformational isomers (AT-hook peptide 3 KRGRGRPRK [M + 2H](+2)), and a complex mixture of polyaromatic hydrocarbons (PAH) from coal tar. Baseline separation of the structural peptide isomers SDGRG and GRGDS, [M + H](+), was observed, and three conformations were identified for the AT-hook peptide 3 KRGRGRPRK [M + 2H](+2) during OSA-TIMS-FT-ICR MS. A 2-fold increase in the number of molecular features and a 2-6-fold signal-to-noise increase was observed for OSA-TIMS when compared with SA-TIMS during the PAH analysis. This work provides the proof-of-principle for further application of OSA-TIMS-FT-ICR MS for the unsupervised analysis of complex mixtures based on the characterization of the conformational space and the assignment of chemical formulas in a single analysis.
Online Inquiry
Verification code
Inquiry Basket