Sermorelin
Need Assistance?
  • US & Canada:
    +
  • UK: +

Sermorelin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

This polypeptide is a growth hormone-releasing hormone (GHRH) analogue which is made up of 29 amino acids. Sermorelin is recognized as the shortest fully functional fragment of GHRH. It is used as a diagnostic agent to assess growth hormone (GH) secretion. Meanwhile, it is also used as doping agent in sports due to its correlation with increased growth of muscular and skeletal tissue.

Category
Peptide Inhibitors
Catalog number
BAT-010071
CAS number
86168-78-7
Molecular Formula
C149H246N44O42S
Molecular Weight
3357.88
Sermorelin
IUPAC Name
(3S)-4-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-amino-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-2-oxoethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-[[(2S)-2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]propanoyl]amino]-4-oxobutanoic acid
Synonyms
1-29-Somatoliberin (human pancreatic islet), 29-L-argininamide-; 1-29-Human GH-RH-NH2; 1-29-Human GRF-NH2; [1-29]-Human somatoliberin-NH2; Geref; Groliberin; Groliberin R; hGH-RH-(1-29)-NH2; Human growth hormone-releasing factor(1-29) amide; Human growth hormone-releasing hormone(1-29) amide; Human pancreatic somatoliberin(1-29) amide; Human somatoliberin-(1-29) amide; Porcine growth hormone-releasing factor(1-29)-NH2; GRF (1-29) amide (human); GHRF (1-29), amide, human; H-Tyr-Ala-Asp-Ala-Ile-Phe-Thr-Asn-Ser-Tyr-Arg-Lys-Val-Leu-Gly-Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-Asp-Ile-Met-Ser-Arg-NH2
Related CAS
114466-38-5 (acetate hydrate) 516482-86-3 (acetate) 93751-85-0 (Deleted CAS) 94883-21-3 (Deleted CAS) 97529-94-7 (Deleted CAS) 150260-18-7 (Deleted CAS) 144278-31-9 (hexakis(trifluoroacetate) salt)
Appearance
White powder
Purity
95%
Density
1.45±0.1 g/cm3
Sequence
YADAIFTNSYRKVLGQLSARKLLQDIMSR-NH2
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C149H246N44O42S/c1-20-77(13)116(191-122(211)81(17)168-132(221)104(66-113(204)205)178-121(210)79(15)167-123(212)88(152)62-84-39-43-86(198)44-40-84)145(234)185-102(63-83-32-23-22-24-33-83)138(227)193-118(82(18)197)146(235)186-103(65-111(155)202)137(226)189-108(71-196)142(231)182-101(64-85-41-45-87(199)46-42-85)136(225)175-93(38-31-56-165-149(161)162)126(215)174-91(35-26-28-53-151)131(220)190-115(76(11)12)143(232)184-97(58-72(3)4)124(213)166-68-112(203)170-94(47-49-109(153)200)128(217)180-100(61-75(9)10)135(224)188-106(69-194)140(229)169-80(16)120(209)172-92(37-30-55-164-148(159)160)125(214)173-90(34-25-27-52-150)127(216)179-99(60-74(7)8)134(223)181-98(59-73(5)6)133(222)176-95(48-50-110(154)201)129(218)183-105(67-114(206)207)139(228)192-117(78(14)21-2)144(233)177-96(51-57-236-19)130(219)187-107(70-195)141(230)171-89(119(156)208)36-29-54-163-147(157)158/h22-24,32-33,39-46,72-82,88-108,115-118,194-199H,20-21,25-31,34-38,47-71,150-152H2,1-19H3,(H2,153,200)(H2,154,201)(H2,155,202)(H2,156,208)(H,166,213)(H,167,212)(H,168,221)(H,169,229)(H,170,203)(H,171,230)(H,172,209)(H,173,214)(H,174,215)(H,175,225)(H,176,222)(H,177,233)(H,178,210)(H,179,216)(H,180,217)(H,181,223)(H,182,231)(H,183,218)(H,184,232)(H,185,234)(H,186,235)(H,187,219)(H,188,224)(H,189,226)(H,190,220)(H,191,211)(H,192,228)(H,193,227)(H,204,205)(H,206,207)(H4,157,158,163)(H4,159,160,164)(H4,161,162,165)/t77-,78-,79-,80-,81-,82+,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,115-,116-,117-,118-/m0/s1
InChI Key
WGWPRVFKDLAUQJ-MITYVQBRSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC1=CC=CC=C1)C(=O)NC(C(C)O)C(=O)NC(CC(=O)N)C(=O)NC(CO)C(=O)NC(CC2=CC=C(C=C2)O)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NCC(=O)NC(CCC(=O)N)C(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCC(=O)N)C(=O)NC(CC(=O)O)C(=O)NC(C(C)CC)C(=O)NC(CCSC)C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)N)NC(=O)C(C)NC(=O)C(CC(=O)O)NC(=O)C(C)NC(=O)C(CC3=CC=C(C=C3)O)N
1.Antagonist of GH-releasing hormone receptors alleviates experimental ocular inflammation.
Qin YJ1, Chan SO2, Chong KK3, Li BF1, Ng TK3, Yip YW1, Chen H4, Zhang M4, Block NL5, Cheung HS6, Schally AV7, Pang CP8. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18303-8. doi: 10.1073/pnas.1421815112. Epub 2014 Dec 8.
Disruptions in immunity and occurrence of inflammation cause many eye diseases. The growth hormone-releasing hormone-growth hormone-insulin-like growth factor-1 (GHRH-GH-IGF1) axis exerts regulatory effects on the immune system. Its involvement in ocular inflammation remains to be investigated. Here we studied this signaling in endotoxin-induced uveitis (EIU) generated by LPS. The increase in GHRH receptor (GHRH-R) protein levels was parallel to the increase in mRNA levels of pituitary-specific transcription factor-1, GHRH-R splice variant 1, GHRH, and GH following LPS insult. Elevation of GHRH-R and GH receptor was localized on the epithelium of the iris and ciliary body, and GHRH-R was confined to the infiltrating macrophages and leukocytes in aqueous humor but not to those in stroma. Treatment with GHRH-R antagonist decreased LPS-stimulated surges of GH and IGF1 in aqueous humor and alleviated inflammation by reducing the infiltration of macrophages and leukocytes and the production of TNF-α, IL-1β, and monocyte chemotactic protein-1.
2.Expanded test method for peptides >2 kDa employing immunoaffinity purification and LC-HRMS/MS.
Thomas A1, Walpurgis K1, Tretzel L1, Brinkkötter P2, Fichant E3, Delahaut P3, Schänzer W1, Thevis M1. Drug Test Anal. 2015 Nov-Dec;7(11-12):990-8. doi: 10.1002/dta.1868. Epub 2015 Sep 18.
Bioactive peptides with an approximate molecular mass of 2-12 kDa are of considerable relevance in sports drug testing. Such peptides have been used to manipulate several potential performance-enhancing processes in the athlete's body and include for example growth hormone releasing hormones (sermorelin, CJC-1293, CJC-1295, tesamorelin), synthetic/animal insulins (lispro, aspart, glulisine, glargine, detemir, degludec, bovine and porcine insulin), synthetic ACTH (synacthen), synthetic IGF-I (longR(3) -IGF-I) and mechano growth factors (human MGF, modified human MGF, 'full-length' MGF). A combined initial test method using one analytical procedure is a desirable tool in doping controls and related disciplines as requests for higher sample throughput with utmost comprehensiveness preferably at reduced costs are constantly issued. An approach modified from an earlier assay proved fit-for-purpose employing pre-concentration of all target analytes by means of ultrafiltration, immunoaffinity purification with coated paramagnetic beads, nano-ultra high performance liquid chromatography (UHPLC) separation, and subsequent detection by means of high resolution tandem mass spectrometry.
3.Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.
Nair D1, Ramesh V, Li RC, Schally AV, Gozal D. J Neurochem. 2013 Nov;127(4):531-40. doi: 10.1111/jnc.12360. Epub 2013 Jul 19.
Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice.
4.Growth hormone-releasing hormone antagonists abolish the transactivation of human epidermal growth factor receptors in advanced prostate cancer models.
Muñoz-Moreno L1, Arenas MI, Carmena MJ, Schally AV, Prieto JC, Bajo AM. Invest New Drugs. 2014 Oct;32(5):871-82. doi: 10.1007/s10637-014-0131-4. Epub 2014 Jul 8.
Growth hormone-releasing hormone (GHRH) and its receptors have been implicated in a variety of cellular phenotypes related with tumorigenesis process. Human epidermal growth factor receptor family members (HER) such as EGFR and HER2 are involved in mitogenic signaling pathways implicated in the progression of prostate cancer. We analyzed the cross-talk between GHRH and EGF receptors in prostate cancer. The effects of GHRH in HER signaling were evaluated on human androgen-independent PC3 prostate cancer cells in vitro and GHRH antagonist in vitro and in nude mice xenografts of PC3 prostate cancer. Time-course studies indicated that GHRH had a stimulatory activity on both the expression of EGFR and HER2. GHRH analogues, JMR-132 and JV-1-38, endowed with antagonistic activity for GHRH receptors, abrogated the response to GHRH in PC3 cells. GHRH stimulated a rapid ligand-independent activation of EGFR and HER2 involving at least cAMP/PKA and Src family signaling pathways.
Online Inquiry
Verification code
Inquiry Basket