Stresscopin (3-40) (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Stresscopin (3-40) (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Stresscopin (3-40) (human), a highly selective ligand of the CRF-II receptor, inhibits food intake, delays gastric emptying and reduces heat-induced edema in mammals.

Category
Functional Peptides
Catalog number
BAT-015275
CAS number
357952-09-1
Molecular Formula
C185H307N53O50S2
Molecular Weight
4137.93
Stresscopin (3-40) (human)
IUPAC Name
(3S)-4-[[(2S)-1-[(2S)-2-[[(2S,3R)-1-[[(2S)-4-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S,3S)-1-amino-3-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]amino]-3-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-amino-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoic acid
Synonyms
Urocortin III (human); H-Phe-Thr-Leu-Ser-Leu-Asp-Val-Pro-Thr-Asn-Ile-Met-Asn-Leu-Leu-Phe-Asn-Ile-Ala-Lys-Ala-Lys-Asn-Leu-Arg-Ala-Gln-Ala-Ala-Ala-Asn-Ala-His-Leu-Met-Ala-Gln-Ile-NH2; L-phenylalanyl-L-threonyl-L-leucyl-L-seryl-L-leucyl-L-alpha-aspartyl-L-valyl-L-prolyl-L-threonyl-L-asparagyl-L-isoleucyl-L-methionyl-L-asparagyl-L-leucyl-L-leucyl-L-phenylalanyl-L-asparagyl-L-isoleucyl-L-alanyl-L-lysyl-L-alanyl-L-lysyl-L-asparagyl-L-leucyl-L-arginyl-L-alanyl-L-glutaminyl-L-alanyl-L-alanyl-L-alanyl-L-asparagyl-L-alanyl-L-histidyl-L-leucyl-L-methionyl-L-alanyl-L-glutaminyl-L-isoleucinamide; Urocortin-3 (human)
Related CAS
351999-19-4 (Urocortin 3)
Appearance
White Lyophilized Powder
Purity
≥90%
Sequence
FTLSLDVPTNIMNLLFNIAKAKNLRAQAAANAHLMAQI-NH2
Storage
Store at -20°C
Solubility
Soluble in Acetic Acid, Water
InChI
InChI=1S/C185H307N53O50S2/c1-33-93(18)142(147(196)251)233-163(267)114(57-59-134(190)243)213-152(256)101(26)207-160(264)115(60-66-289-31)215-166(270)118(69-87(6)7)220-172(276)124(76-108-83-199-85-201-108)217-155(259)102(27)208-164(268)125(77-135(191)244)218-154(258)98(23)203-148(252)96(21)202-149(253)97(22)204-159(263)113(56-58-133(189)242)212-151(255)100(25)206-158(262)112(54-46-64-200-185(197)198)214-165(269)117(68-86(4)5)221-173(277)126(78-136(192)245)225-161(265)111(53-43-45-63-187)211-150(254)99(24)205-157(261)110(52-42-44-62-186)210-153(257)103(28)209-180(284)143(94(19)34-2)234-175(279)128(80-138(194)247)227-171(275)123(75-107-50-40-37-41-51-107)224-168(272)120(71-89(10)11)219-167(271)119(70-88(8)9)222-174(278)127(79-137(193)246)226-162(266)116(61-67-290-32)216-181(285)144(95(20)35-3)235-176(280)129(81-139(195)248)230-183(287)146(105(30)241)237-179(283)132-55-47-65-238(132)184(288)141(92(16)17)232-177(281)130(82-140(249)250)228-169(273)121(72-90(12)13)223-178(282)131(84-239)231-170(274)122(73-91(14)15)229-182(286)145(104(29)240)236-156(260)109(188)74-106-48-38-36-39-49-106/h36-41,48-51,83,85-105,109-132,141-146,239-241H,33-35,42-47,52-82,84,186-188H2,1-32H3,(H2,189,242)(H2,190,243)(H2,191,244)(H2,192,245)(H2,193,246)(H2,194,247)(H2,195,248)(H2,196,251)(H,199,201)(H,202,253)(H,203,252)(H,204,263)(H,205,261)(H,206,262)(H,207,264)(H,208,268)(H,209,284)(H,210,257)(H,211,254)(H,212,255)(H,213,256)(H,214,269)(H,215,270)(H,216,285)(H,217,259)(H,218,258)(H,219,271)(H,220,276)(H,221,277)(H,222,278)(H,223,282)(H,224,272)(H,225,265)(H,226,266)(H,227,275)(H,228,273)(H,229,286)(H,230,287)(H,231,274)(H,232,281)(H,233,267)(H,234,279)(H,235,280)(H,236,260)(H,237,283)(H,249,250)(H4,197,198,200)/t93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104+,105+,109-,110-,111-,112-,113-,114-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,141-,142-,143-,144-,145-,146-/m0/s1
InChI Key
FCENQCVTLJEGOT-KIHVXQRMSA-N
Canonical SMILES
CCC(C)C(C(=O)N)NC(=O)C(CCC(=O)N)NC(=O)C(C)NC(=O)C(CCSC)NC(=O)C(CC(C)C)NC(=O)C(CC1=CN=CN1)NC(=O)C(C)NC(=O)C(CC(=O)N)NC(=O)C(C)NC(=O)C(C)NC(=O)C(C)NC(=O)C(CCC(=O)N)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC(C)C)NC(=O)C(CC(=O)N)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C(C(C)CC)NC(=O)C(CC(=O)N)NC(=O)C(CC2=CC=CC=C2)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC(=O)N)NC(=O)C(CCSC)NC(=O)C(C(C)CC)NC(=O)C(CC(=O)N)NC(=O)C(C(C)O)NC(=O)C3CCCN3C(=O)C(C(C)C)NC(=O)C(CC(=O)O)NC(=O)C(CC(C)C)NC(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(C(C)O)NC(=O)C(CC4=CC=CC=C4)N
1. Chewing during prenatal stress prevents prenatal stress-induced suppression of neurogenesis, anxiety-like behavior and learning deficits in mouse offspring
Ayumi Suzuki, Mika Kotachi, Mitsuo Iinuma, Kin-Ya Kubo, Kagaku Azuma Int J Med Sci . 2018 May 26;15(9):849-858. doi: 10.7150/ijms.25281.
Prenatal stress (PS) induces learning deficits and anxiety-like behavior in mouse pups by increasing corticosterone levels in the dam. We examined the effects of maternal chewing during PS on arginine vasopressin (AVP) mRNA expression in the dams and on neurogenesis, brain-derived neurotrophic factor (BDNF) mRNA expression, learning deficits and anxiety-like behavior in the offspring. Mice were divided into control, stress and stress/chewing groups. Pregnant mice were exposed to restraint stress beginning on day 12 of pregnancy and continuing until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint stress. PS significantly increased AVP mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus in the dams. PS also impaired learning ability, suppressed neurogenesis and BDNF mRNA expression in the hippocampus, and induced anxiety-like behavior in the offspring. Chewing during PS prevented the PS-induced increase in AVP mRNA expression of the PVN in the dams. Chewing during PS significantly attenuated the PS-induced learning deficits, anxiety-like behavior, and suppression of neurogenesis and BDNF mRNA expression in the hippocampus of the offspring. Chewing during PS prevented the increase in plasma corticosterone in the dam by inhibiting the hypothalamic-pituitary-adrenal axis activity, and attenuated the attenuated the PS-induced suppression of neurogenesis and BDNF expression in the hippocampus of the pups, thereby ameliorating the PS-induced learning deficits and anxiety-like behavior. Chewing during PS is an effective stress-coping method for the dam to prevent PS-induced deficits in learning ability and anxiety-like behavior in the offspring.
2. Factors Related to Smartphone Overdependence in Mothers of Preschoolers: A Systematic Review and Meta-Analysis
Gumhee Lee, Eunjin Yang J Psychosoc Nurs Ment Health Serv . 2022 Mar;60(3):40-47. doi: 10.3928/02793695-20210915-01.
Smartphone overdependence (SO) in mothers of preschoolers (MPs) reduces the parenting capacity of MPs. The current study aimed to identify associated factors of SO in MPs through a systematic review and meta-analysis conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using 10 electronic databases. A total of 18 studies met the inclusion criteria. It was confirmed that SO in MPs is a coping strategy used to manage stress during childrearing. Parenting stress, depression, unemployment, and low household income were identified as risk factors that increased SO in MPs. Protective factors that reduced SO in MPs included resilience and parental intelligence. Findings emphasize the need to assess risk factors to prevent SO in MPs. It is suggested that programs to prevent SO in MPs be developed based on results of this study. [Journal of Psychosocial Nursing and Mental Health Services, 60(3), 40-47.].
3. Multimodal examination of distress tolerance and posttraumatic stress disorder symptoms in acute-care psychiatric inpatients
Erin C Berenz, Christina D Dutcher, Anka A Vujanovic J Anxiety Disord . 2017 May;48:45-53. doi: 10.1016/j.janxdis.2016.08.005.
Distress tolerance (DT), the actual or perceived capacity to withstand negative internal states, has received increasing scholarly attention due to its theoretical and clinical relevance to posttraumatic stress disorder (PTSD). Past studies have indicated that lower self-reported - but not behaviorally observed - DT is associated with greater PTSD symptoms; however, studies in racially and socioeconomically diverse clinical samples are lacking. The current study evaluated associations between multiple measures of DT (self-report and behavioral) and PTSD symptoms in an urban, racially and socioeconomically diverse, acute-care psychiatric inpatient sample. It was hypothesized that lower self-reported DT (Distress Tolerance Scale [DTS]), but not behavioral DT (breath-holding task [BH]; mirror-tracing persistence task [MT]), would be associated with greater PTSD symptoms, above and beyond the variance contributed by trauma load, substance use, gender, race/ethnicity, and subjective social status. Participants were 103 (41.7% women, Mage=33.5) acute-care psychiatric inpatients who endorsed exposure to potentially traumatic events consistent with DSM-5 PTSD Criterion A. Results of hierarchical regression analyses indicated that DTS was negatively associated with PTSD symptom severity (PCL-5 Total) as well as with each of the four DSM-5 PTSD symptom clusters (p's<0.001), contributing between 5.0%-11.1% of unique variance in PTSD symptoms across models. BH duration was positively associated with PTSD arousal symptom severity (p<0.05). Covariates contributed between 21.3%-40.0% of significant variance to the models. Associations between DT and PTSD in this sample of acute-care psychiatric inpatients are largely consistent with those observed in community samples.
Online Inquiry
Verification code
Inquiry Basket