Suc-Gly-Pro-pNA
Need Assistance?
  • US & Canada:
    +
  • UK: +

Suc-Gly-Pro-pNA

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-015829
CAS number
115846-45-2
Molecular Formula
C17H20N4O7
Molecular Weight
392.36
Suc-Gly-Pro-pNA
IUPAC Name
4-[[2-[(2S)-2-[(4-nitrophenyl)carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-4-oxobutanoic acid
Synonyms
SUC-GLY-PRO-PNA
Sequence
Suc-Gly-Pro-pNA
Storage
Store at -20°C
InChI
InChI=1S/C17H20N4O7/c22-14(7-8-16(24)25)18-10-15(23)20-9-1-2-13(20)17(26)19-11-3-5-12(6-4-11)21(27)28/h3-6,13H,1-2,7-10H2,(H,18,22)(H,19,26)(H,24,25)/t13-/m0/s1
InChI Key
VZJOBHXJPRQCGO-ZDUSSCGKSA-N
Canonical SMILES
C1CC(N(C1)C(=O)CNC(=O)CCC(=O)O)C(=O)NC2=CC=C(C=C2)[N+](=O)[O-]
1. The noncatalytic beta-propeller domain of prolyl oligopeptidase enhances the catalytic capability of the peptidase domain
Z Szeltner, V Renner, L Polgár J Biol Chem. 2000 May 19;275(20):15000-5. doi: 10.1074/jbc.M000942200.
Prolyl oligopeptidase, which is involved in memory disorders, is a member of a new family of serine peptidases. In addition to the peptidase domain, the enzyme contains a beta-propeller, which excludes large peptides from the active site. The enzyme is inhibited with thiol reagents, possibly by reacting with Cys-255 located close to the substrate binding site. This assumption was tested with the Cys-255 --> Thr, Cys-255 --> Ala, and Cys-255 --> Ser variants of prolyl oligopeptidase. In contrast to the wild type enzyme, the Cys-255 --> Thr variant was not inhibited with N-ethylmaleimide, indicating that Cys-255, of the 16 free cysteine residues, exclusively accounts for the enzyme inhibition. Unlike the wild type enzyme that showed a doubly bell-shaped pH rate profile, the modified enzyme displayed a single bell-shaped pH dependence with benzyloxycarbonyl-Gly-Pro-naphthylamide. It was the high pH form of the enzyme that virtually disappeared with all three enzyme variants. A substantial reduction was also observed in k(cat)/K(m) for the aminobenzoyl-Ser-Pro-Phe(NO(2))-Ala-OH substrate. The high pK(a) (9.77) of Cys-255 determined by titration with N-ethylmaleimide excluded the possibility that ionization of the thiol group was responsible for generation of the two active enzyme forms. The impaired activity of the enzyme variants could be rationalized in terms of weaker binding, which manifests itself in high K(m) for substrates and high K(i) for inhibitors, like benzyloxycarbonyl-Gly-Pro-OH and aminobenzoyl-Ser-d-Pro-Phe(NO(2))-Ala-OH. It was concluded that, besides selecting substrates by size, the beta-propeller domain containing Cys-255 remarkably contributed to catalysis of the peptidase domain.
2. Purification and characterization of a Z-pro-prolinal-insensitive Z-Gly-Pro-7-amino-4-methyl coumarin-hydrolyzing peptidase from bovine serum--a new proline-specific peptidase
Y A Birney, B F O'Connor Protein Expr Purif. 2001 Jul;22(2):286-98. doi: 10.1006/prep.2001.1450.
The study of a new proline-specific peptidase from bovine serum is presented. The enzyme readily cleaves the prolyl oligopeptidase (PO) substrate Z-Gly-Pro-MCA, liberating the fluorophore MCA, thus allowing quantification of enzyme activity. Unlike PO, however, this peptidase is completely insensitive to the PO-specific inhibitor Z-Pro-prolinal and has been designated Z-Pro-prolinal-insensitive Z-Gly-Pro-MCA-hydrolyzing peptidase (ZIP). The two peptidases were successfully separated from each other by phenyl Sepharose hydrophobic interaction chromatography and the subsequent purification focused on the isolation of ZIP from bovine serum. In addition to phenyl Sepharose, calcium phosphate cellulose and DEAE anion-exchange chromatography were employed in the purification, with an overall enzyme yield of 33% and a purification factor of 4023. SDS-PAGE and size-exclusion chromatography indicated a dimeric structure with a relative molecular mass of 174 kDa. The enzyme was stable over the pH range 2.5-10.0. Optimal activity was detected in the pH range 7.4-8.0. Isoelectric focusing revealed a pI of 5.68. Inhibition by AEBSF suggests the peptidase may be a serine protease and ZIP possibly contains a cysteine residue near the active site. alpha(2)M failed to inhibit activity, suggesting oligopeptidase specificity. HPLC analysis revealed a broad substrate specificity for proline-containing peptides. Kinetic analysis indicated that ZIP had a high affinity for Z-Gly-Pro-MCA with a K(m) of 54 microM deduced. Bovine serum ZIP exhibits biophysical characteristics both similar to and different from those of PO isolated from a number of sources and may serve an important physiological function in the degradation of bioactive oligopeptides.
3. Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. Site specific mutagenesis at the oxyanion binding site
Zoltan Szeltner, Dean Rea, Veronika Renner, Vilmos Fulop, Laszlo Polgar J Biol Chem. 2002 Nov 8;277(45):42613-22. doi: 10.1074/jbc.M208043200. Epub 2002 Aug 28.
Prolyl oligopeptidase, a member of a new family of serine peptidases, plays an important role in memory disorders. Earlier x-ray crystallographic investigations indicated that stabilization of the tetrahedral transition state of the reaction involved hydrogen bond formation between the oxyanion of the tetrahedral intermediate and the OH group of Tyr(473). The contribution of the OH group was tested with the Y473F variant using various substrates. The charged succinyl-Gly-Pro-4-nitroanilide was hydrolyzed with a much lower k(cat)/K(m) compared with the neutral benzyloxycarbonyl-G1y-Pro-2-naphthylamide, although the binding modes of the two substrates were similar, as shown by x-ray crystallography. This suggested that electrostatic interactions between Arg(643) and the succinyl group competed with the productive binding mechanism. Unlike most enzyme reactions, catalysis by the wild-type enzyme exhibited positive activation entropy. In contrast, the activation entropy for the Y473F variant was negative, suggesting that the tyrosine OH group is involved in stabilizing both the transition state and the water shell at the active site. Importantly, Tyr(473) is also implicated in the formation of the enzyme-substrate complex. The nonlinear Arrhenius plot suggested a greater significance of the oxyanion binding site at physiological temperature. The results indicated that Tyr(473) was more needed at high pH, at high temperature, and with charged substrates exhibiting "internally competitive inhibition."
Online Inquiry
Verification code
Inquiry Basket