Sulfo-SMCC sodium
Need Assistance?
  • US & Canada:
    +
  • UK: +

Sulfo-SMCC sodium

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Sulfo-SMCC sodium is a commonly used hetero-bifunctional, noncleavable ADC crosslinker bearing N-hydroxysuccinimide (NHS) ester and maleimide groups to react with primary amines and sulfhydryl groups, respectively.

Category
Peptide Synthesis Reagents
Catalog number
BAT-006462
CAS number
92921-24-9
Molecular Formula
C16H17N2NaO9S
Molecular Weight
436.37
Sulfo-SMCC sodium
Size Price Stock Quantity
100 mg $294 In stock
1 g $504 In stock
IUPAC Name
sodium;1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonate
Synonyms
Sulfo-SMCC; Sodium 1-((4-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)methyl)cyclohexanecarbonyl)oxy)-2,5-dioxopyrrolidine-3-sulfonate
Related CAS
103708-09-4 (free acid)
Appearance
Off-white powder
Purity
>98.0%
Melting Point
> 260 °C (dec.)
Storage
Store at -20 °C, keep in dry and avoid sunlight.
Solubility
10 mm in DMSO
InChI
InChI=1S/C16H18N2O9S.Na/c19-12-5-6-13(20)17(12)8-9-1-3-10(4-2-9)16(23)27-18-14(21)7-11(15(18)22)28(24,25)26;/h5-6,9-11H,1-4,7-8H2,(H,24,25,26);/q;+1/p-1
InChI Key
VUFNRPJNRFOTGK-UHFFFAOYSA-M
Canonical SMILES
C1CC(CCC1CN2C(=O)C=CC2=O)C(=O)ON3C(=O)CC(C3=O)S(=O)(=O)[O-].[Na+]
1. Improved performance of collagen scaffolds crosslinked by Traut's reagent and Sulfo-SMCC
Yiming Li, Qifen He, Xiucheng Hu, Yun Liu, Xiaohui Cheng, Xiachen Li, Feilong Deng J Biomater Sci Polym Ed. 2017 May;28(7):629-647. doi: 10.1080/09205063.2017.1291296. Epub 2017 Feb 13.
Collagen scaffolds are frequently employed for applications in regenerative medicine. In previous studies, we affirmed that Traut's reagent (2-Iminothiolane hydrochloride) and Sulfo-SMCC (4-(N-Maleimidomethyl) cyclohexane-1-carboxylic acid 3-sulpho-N-hydroxysuccinimide ester sodium salt) could covalently bind growth factors on collagen scaffolds. We also observed that crosslinking formed within the collagen scaffolds with excess dosage of Sulfo-SMCC, which improved the biological performance of collagen scaffolds together with growth factors. In order to evaluate changes in capacity caused by crosslinking, Traut's reagent and adjusted different concentrations of Sulfo-SMCC (0.263, 1.315, 2.63 and 5.26 mM) were used to construct collagen scaffolds with differing extents of crosslinking in this study. The results demonstrated that resistance of collagen scaffolds to enzymatic digestion, cellularization and vascularization in vivo were enhanced by the crosslinking procedure. The cell culture studies indicated that the crosslinking procedure did not influence biocompatibility. Moreover, there were no statistical differences in the degradation rate, cellularization or vascularization among 1.315, 2.63 and 5.26 mM crosslinked groups. These results demonstrated that crosslinking collagen scaffolds with an appropriate amount of Traut's reagent and Sulfo-SMCC was an effective and safe method to modify naturally derived collagen scaffolds with notable potential uses in tissue regeneration.
2. A universally applicable 68Ga-labeling technique for proteins
Carmen Wängler, Björn Wängler, Sebastian Lehner, Andreas Elsner, Andrei Todica, Peter Bartenstein, Marcus Hacker, Ralf Schirrmacher J Nucl Med. 2011 Apr;52(4):586-91. doi: 10.2967/jnumed.110.082198. Epub 2011 Mar 18.
Although protein-based PET imaging agents are projected to become important tracer molecules in the future, the labeling of complex biomolecules with PET radionuclides is inexpedient and, most of the time, challenging. Methods: Here we present a straightforward labeling chemistry to attach the versatile radionuclide (68)Ga to proteins. Introducing the (68)Ga chelating agent NODA-GA-T (2,2'-(7-(1-carboxy-4-(2-mercaptoethylamino)-4-oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid) by reaction with proteins chemically processed with sulfo-SMCC (4-(N-maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt) results in labeling precursors, enabling a simple and rapid kit-labeling procedure that requires no workup of the radiolabeled proteins. Various (68)Ga- proteins were labeled using this method, and the radiochemical yields and specific activities of the labeled proteins were determined. To show that the radiotracers are applicable for in vivo studies, proof-of-concept small-animal PET images were acquired in healthy rats using (68)Ga rat serum albumin for blood-pool imaging and (68)Ga-annexin V for apoptosis imaging in mice with a left ventricular myocardial infarction. Results: The proteins could be modified, yielding 1.2-1.7 (68)Ga-labeling sites per protein molecule. All investigated proteins could be labeled in high radiochemical yields of 95% or more in less than 10 min in 1 step, using acetate-buffered medium (pH 3.5-4.0) at room temperature without any further purification. The labeled proteins displayed specific activities of 20-45 GBq/μmol (540-1,200 Ci/mmol). In the proof-of-concept in vivo studies, (68)Ga rat serum albumin and (68)Ga-annexin V were successfully used for in vivo imaging. Both radiotracers showed a favorable biodistribution in the animal models, thus demonstrating the usefulness of the developed approach for the kit (68)Ga labeling of proteins. Conclusion: The preprocessing of proteins proceeds in high chemical yields and with high protein recovery rates after purification. These precursors can be stored for several months at -20°C without degradation, and (68)Ga labeling can be performed in a 1-step kit-labeling reaction in high radiochemical yields. Two of the derivatized model proteins were successfully used in proof-of-concept in vivo imaging studies to prove the applicability of this kit (68)Ga-labeling technique.
3. Synthesis, characterization, and in vitro cytotoxicity of fatty acyl-CGKRK-chitosan oligosaccharides conjugates for siRNA delivery
Naglaa Salem El-Sayed, et al. Int J Biol Macromol. 2018 Jun;112:694-702. doi: 10.1016/j.ijbiomac.2018.01.213. Epub 2018 Feb 2.
In this studies, three fatty acyl derivatives of CGKRK homing peptides were coupled successfully to chitosan oligosaccharides (COS) using sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate sodium salt (sulfo-SMCC). The COS-SMCC was prepared by direct coupling between COS and sulfo-SMCC in PBS (pH7.5) at RT for 48h. The structure of COS-SMCC and the three fatty acyl-CGKRK-SMCC-COS conjugates were characterized by FT-IR, 13C NMR, and SEM. The ability of three conjugates to condense siRNA into nanosized polyplexes and their efficacy in protecting siRNA from serum nucleases degradation were investigated. Among the investigated derivatives, S-CGKRK-COS showed higher siRNA binding affinity as compared to the P-CGKRK-COS and O-CGKRK-COS, respectively. At a ratio of 10:1, complete protection for siRNA from early enzymatic degradation was achieved. The polymers and the polymer/siRNA polyplexes showed negligible cytotoxicity on human breast cancer cell line MDA-MB-231 at all investigated ratios. However, the polyplexes prepared with palmitoyl and oleoyl derivatives at polymer concentration 10μg/mL reduced the cell viability by 21.5% and 35%, respectively. The results of this study revealed the potential use of fatty acyl-CGKRK-COS as a siRNA carrier and confirmed the importance of incorporating a hydrophobic moiety into chitosan to improve its capacity in complexing with siRNA and protection from degradation.
Online Inquiry
Verification code
Inquiry Basket