Need Assistance?
  • US & Canada:
    +
  • UK: +

TAT 2-4

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

TAT 2-4 is a peptide derived from the HIV-1 transactivator of transcription (Tat) protein.

Category
Peptide Inhibitors
Catalog number
BAT-009368
CAS number
1159916-66-1
Molecular Formula
C132H240N66O29
Molecular Weight
3215.74
IUPAC Name
2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]-5-carbamimidamidopentanoyl]amino]hexanoyl]amino]hexanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]acetyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]-5-carbamimidamidopentanoyl]amino]hexanoyl]amino]hexanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]acetic acid
Synonyms
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Gly-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Gly; L-tyrosylglycyl-L-arginyl-L-lysyl-L-lysyl-L-arginyl-L-arginyl-L-glutaminyl-L-arginyl-L-arginyl-L-arginylglycyl-L-tyrosylglycyl-L-arginyl-L-lysyl-L-lysyl-L-arginyl-L-arginyl-L-glutaminyl-L-arginyl-L-arginyl-L-arginylglycine
Appearance
White Lyophilized Powder
Purity
≥95%
Density
1.6±0.1 g/cm3
Sequence
YGRKKRRQRRRGYGRKKRRQRRRG
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C132H240N66O29/c133-49-5-1-21-80(185-105(212)78(27-11-55-166-123(144)145)180-97(203)67-176-101(208)75(137)65-71-37-41-73(199)42-38-71)107(214)187-82(23-3-7-51-135)109(216)189-86(31-15-59-170-127(152)153)113(220)193-90(35-19-63-174-131(160)161)117(224)197-92(45-47-95(138)201)119(226)195-88(33-17-61-172-129(156)157)115(222)191-84(29-13-57-168-125(148)149)111(218)183-76(25-9-53-164-121(140)141)102(209)177-69-99(205)182-94(66-72-39-43-74(200)44-40-72)104(211)178-68-98(204)181-79(28-12-56-167-124(146)147)106(213)186-81(22-2-6-50-134)108(215)188-83(24-4-8-52-136)110(217)190-87(32-16-60-171-128(154)155)114(221)194-91(36-20-64-175-132(162)163)118(225)198-93(46-48-96(139)202)120(227)196-89(34-18-62-173-130(158)159)116(223)192-85(30-14-58-169-126(150)151)112(219)184-77(26-10-54-165-122(142)143)103(210)179-70-100(206)207/h37-44,75-94,199-200H,1-36,45-70,133-137H2,(H2,138,201)(H2,139,202)(H,176,208)(H,177,209)(H,178,211)(H,179,210)(H,180,203)(H,181,204)(H,182,205)(H,183,218)(H,184,219)(H,185,212)(H,186,213)(H,187,214)(H,188,215)(H,189,216)(H,190,217)(H,191,222)(H,192,223)(H,193,220)(H,194,221)(H,195,226)(H,196,227)(H,197,224)(H,198,225)(H,206,207)(H4,140,141,164)(H4,142,143,165)(H4,144,145,166)(H4,146,147,167)(H4,148,149,168)(H4,150,151,169)(H4,152,153,170)(H4,154,155,171)(H4,156,157,172)(H4,158,159,173)(H4,160,161,174)(H4,162,163,175)/t75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-/m0/s1
InChI Key
KNYDXJXPYPVEPZ-FINIQRPGSA-N
Canonical SMILES
C1=CC(=CC=C1CC(C(=O)NCC(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NCC(=O)NC(CC2=CC=C(C=C2)O)C(=O)NCC(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NCC(=O)O)N)O
1. Photocatalytic degradation of 2,4-dichlorophenol using bio-green assisted TiO2-CeO2 nanocomposite system
Lalitha Gnanasekaran, Saravanan Rajendran, A K Priya, D Durgalakshmi, Dai-Viet N Vo, Lorena Cornejo-Ponce, F Gracia, Matias Soto-Moscoso Environ Res. 2021 Apr;195:110852. doi: 10.1016/j.envres.2021.110852. Epub 2021 Feb 6.
In recent times, cost effective synthesis of semiconductor materials has been a subject of concern for the day to today applications. In this work, novelty has been made on the facile synthesis of metal oxides (TiO2 and CeO2) and nanocomposites (TiO2-CeO2) through sol-gel and precipitation methods of imparting lemon extract. The synthesized materials behave as the functional catalysts which has been further carried out for the photocatalytic degradation against 2,4-Dichlorophenol (2,4-DCP). The materials are then valued for the structural and optical properties. The lemon extract used in synthesis has played a premier role in upgrading the charge carrier separation, bandgap, and size reduction of the composite system. Further, the CeO2 supported TiO2 sample acts as the better visible light catalyst, due to the prevention of aggregation and existence of line dislocation that supported to access the additional electron trap sites.
2. NF-κB Signaling-Mediated Activation of WNK-SPAK-NKCC1 Cascade in Worsened Stroke Outcomes of Ang II-Hypertensive Mice
Mohammad Iqbal H Bhuiyan, et al. Stroke. 2022 May;53(5):1720-1734. doi: 10.1161/STROKEAHA.121.038351. Epub 2022 Mar 11.
Background: Worsened stroke outcomes with hypertension comorbidity are insensitive to blood pressure-lowering therapies. In an experimental stroke model with comorbid hypertension, we investigated causal roles of ang II (angiotensin II)-mediated stimulation of the brain WNK (with no lysine [K] kinases)-SPAK (STE20/SPS1-related proline/alanine-rich kinase)-NKCC1 (Na-K-Cl cotransporter) complex in worsened outcomes. Methods: Saline- or ang II-infused C57BL/6J male mice underwent stroke induced by permanent occlusion of the distal branches of the middle cerebral artery. Mice were randomly assigned to receive either vehicle dimethyl sulfoxide/PBS (2 mL/kg body weight/day, IP), a novel SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano)methyl)-2-methylphenyl)-2-hydroxybenzamide (ZT-1a' 5 mg/kg per day, IP) or a NF-κB (nuclear factor-κB) inhibitor TAT-NBD (transactivator of transcription-NEMO-binding domain' 20 mg/kg per day, IP). Activation of brain NF-κB and WNK-SPAK-NKCC1 cascade as well as ischemic stroke outcomes were examined. Results: Stroke triggered a 2- to 5-fold increase of WNK (isoforms 1, 2, 4), SPAK/OSR1 (oxidative stress-responsive kinase 1), and NKCC1 protein in the ang II-infused hypertensive mouse brains at 24 hours after stroke, which was associated with increased nuclear translocation of phospho-NF-κB protein in the cortical neurons (a Pearson correlation r of 0.77, P<0.005). The upregulation of WNK-SPAK-NKCC1 cascade proteins resulted from increased NF-κB recruitment on Wnk1, Wnk2, Wnk4, Spak, and Nkcc1 gene promoters and was attenuated by NF-κB inhibitor TAT-NBD. Poststroke administration of SPAK inhibitor ZT-1a significantly reduced WNK-SPAK-NKCC1 complex activation, brain lesion size, and neurological function deficits in the ang II-hypertensive mice without affecting blood pressure and cerebral blood flow. Conclusions: The ang II-induced stimulation of NF-κB transcriptional activity upregulates brain WNK-SPAK-NKCC1 cascade and contributes to worsened ischemic stroke outcomes, illustrating the brain WNK-SPAK-NKCC1 complex as a therapeutic target for stroke with comorbid hypertension.
3. Accelerated charge transfer in well-designed S-scheme Fe@TiO2/Boron carbon nitride heterostructures for high performance tetracycline removal and selective photo-reduction of CO2 greenhouse gas into CH4 fuel
Amit Kumar, Priya Rittika Thakur, Gaurav Sharma, Dai-Viet N Vo, Mu Naushad, Tetiana Tatarchuk, Alberto García-Peñas, Bing Du, Florian J Stadler Chemosphere. 2022 Jan;287(Pt 3):132301. doi: 10.1016/j.chemosphere.2021.132301. Epub 2021 Sep 21.
Designing and fabrication of smart hybrid multifunctional materials for energy/fuel production and environmental detoxification is indeed of great significance for sustainable development. Herein, we synthesized a new well-structured S-scheme heterostructure Fe@TiO2/Boron Carbon nitride (FT/BCN) with high performance tetracycline degradation and selective CO2 photo-reduction to CH4. Under visible light irradiation, 96.3% tetracycline was degraded in 60 min using best performing FT30/BCN sample with a high 83.2% total organic carbon removal in 2 h. The tetracycline degradation rate for FT30/BCN composite catalyst was ~7 times than bare boron carbon nitride (BCN). The impact of reaction parameters as pH, presence of interfering electrolytes, light source and water matrix was also investigated. The FT30/BCN photocatalyst shows dramatic improvement in CO2 photoreduction as exhibited in 24.7 μmol g-1 h-1 CH4 and 2.4 μmol g-1 h-1 CO evolutions with optimal 91.1% CH4 selectivity. Pure BCN shows a poor 39.1% selectivity. Further, effect of alkali activation, CO2/H2O feed ratio, reducing agent and light source onto CH4 production and selectivity was also investigated. The CH4 evolution and selectivity was improved because of enhanced visible light absorption, high adsorption potential, charge carrier separation and high reducing power of photogenerated electrons induced by an effective S-scheme heterojunction between Fe@TiO2 and boron carbon nitride. An S-scheme (step-scheme) charge transfer mechanism is here operative both during tetracycline removal and CO2 reduction. The drug degradation route and photocatalytic mechanism for antibiotic removal and CO2 reduction was also predicted.
Online Inquiry
Verification code
Inquiry Basket