1. Acute humanin therapy attenuates myocardial ischemia and reperfusion injury in mice
Radhika H Muzumdar, et al. Arterioscler Thromb Vasc Biol. 2010 Oct;30(10):1940-8. doi: 10.1161/ATVBAHA.110.205997. Epub 2010 Jul 22.
Objective: Humanin (HN), an endogenous antiapoptotic peptide, has previously been shown to protect against Alzheimer's disease and a variety of cellular insults. We evaluated the effects of a potent analog of HN (HNG) in an in vivo murine model of myocardial ischemia and reperfusion. Methods and results: Male C57BL6/J mice (8 to 10 week old) were subjected to 45 minutes of left coronary artery occlusion followed by a 24-hour reperfusion. HNG or vehicle was administered IP 1 hour prior or at the time of reperfusion. The extent of myocardial infarction per area-at-risk was evaluated at 24 hours using Evans Blue dye and 2-3-5-triphenyl tetrazolium chloride staining. Left ventricular function was evaluated at 1 week after ischemia using high-resolution, 2D echocardiography (VisualSonics Vevo 770). Myocardial cell signaling pathways and apoptotic markers were assessed at various time points (0 to 24 hours) following reperfusion. Cardiomyocyte survival and apoptosis in response to HNG were assessed in vitro. HNG reduced infarct size relative to the area-at-risk in a dose-dependent fashion, with a maximal reduction at the dose of 2 mg/kg. HNG therapy enhanced left ventricular ejection fraction and preserved postischemic left ventricular dimensions (end-diastolic and end-systolic), resulting in improved cardiac function. Treatment with HNG significantly increased phosphorylation of AMPK and phosphorylation of endothelial nitric oxide synthase in the heart and attenuated Bcl-2-associated X protein and B-cell lymphoma-2 levels following myocardial ischemia and reperfusion. HNG improved cardiomyocyte survival and decreased apoptosis in response to daunorubicin in vitro. Conclusions: These data show that HNG provides cardioprotection in a mouse model of myocardial ischemia and reperfusion potentially through activation of AMPK-endothelial nitric oxide synthase-mediated signaling and regulation of apoptotic factors. HNG may represent a novel agent for the treatment of acute myocardial infarction.
2. N-Ethylmaleimide Sensitive Factor (NSF) Inhibition Prevents Vascular Instability following Gram-Positive Pulmonary Challenge
Ji Young Lee, Helena M Linge, Kanta Ochani, Ke Lin, Edmund J Miller PLoS One. 2016 Jun 29;11(6):e0157837. doi: 10.1371/journal.pone.0157837. eCollection 2016.
Background: The Acute Respiratory Distress Syndrome (ARDS), remains a significant source of morbidity and mortality in critically ill patients. Pneumonia and sepsis are leading causes of ARDS, the pathophysiology of which includes increased pulmonary microvascular permeability and hemodynamic instability resulting in organ dysfunction. We hypothesized that N-ethylmaleimide sensitive factor (NSF) regulates exocytosis of inflammatory mediators, such as Angiopoietin-2 (Ang-2), and cytoskeletal stability by modulating myosin light chain (MLC) phosphorylation. Therefore, we challenged pulmonary cells, in vivo and in vitro, with Gram Positive bacterial cell wall components, lipoteichoic acid (LTA), and peptidoglycan (PGN) and examined the effects of NSF inhibition. Methods: Mice were pre-treated with an inhibitor of NSF, TAT-NSF700 (to prevent Ang-2 release). After 30min, LTA and PGN (or saline alone) were instilled intratracheally. Pulse oximetry was assessed in awake mice prior to, and 6 hour post instillation. Post mortem, tissues were collected for studies of inflammation and Ang-2. In vitro, pulmonary endothelial cells were assessed for their responses to LTA and PGN. Results: Pulmonary challenge induced signs of airspace and systemic inflammation such as changes in neutrophil counts and protein concentration in bronchoalveolar lavage fluid and tissue Ang-2 concentration, and decreased physiological parameters including oxygen saturation and pulse distention. TAT-NSF700 pre-treatment reduced LTA-PGN induced changes in lung tissue Ang-2, oxygen saturation and pulse distention. In vitro, LTA-PGN induced a rapid (<2 min) release of Ang-2, which was significantly attenuated by TAT-NSF700 or anti TLR2 antibody. Furthermore, TAT-NSF700 reduced LTA-PGN-induced MLC phosphorylation at low concentrations of 1-10 nM. Conclusions: TAT-NSF700 decreased Ang-2 release, improved oxygen saturation and pulse distention following pulmonary challenge by inhibiting MLC phosphorylation, an important component of endothelial cell retraction. The data suggest that inhibition of NSF in pneumonia and sepsis may be beneficial to prevent the pulmonary microvascular and hemodynamic instability associated with ARDS.
3. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury
Weike Bao, Erding Hu, Ling Tao, Rogely Boyce, Rosanna Mirabile, Douglas T Thudium, Xin-ling Ma, Robert N Willette, Tian-li Yue Cardiovasc Res. 2004 Feb 15;61(3):548-58. doi: 10.1016/j.cardiores.2003.12.004.
Objective: To investigate the role of Rho A and Rho-kinase in acute myocardial ischemia/reperfusion injury and the protective effect of Rho-kinase inhibitor, Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)cyclohexanecarboxamide]. Methods and results: Male CD1 mice were subjected to 30 min of coronary occlusion and 24 h reperfusion. Ischemia/reperfusion upregulated expression of Rho A in ischemic myocardium, and subsequently activated Rho-kinase. Y-27632 significantly inhibited the activation of Rho-kinase following ischemia/reperfusion. Treatment with Y-27632 at 10 and 30 mg/kg oral administration, reduced infarct size by 30.2% and 41.1%, respectively (P<0.01 vs. vehicle). Y-27632 also enhanced post-ischemia cardiac function. Left ventricular systolic pressure, +dP/dt and -dP/dt were significantly improved by 23.5%, 52.3%, and 59.4%, respectively (P<0.01 vs. vehicle). Moreover, Y-27632 reduced ischemia/reperfusion-induced myocardial apoptosis. The apoptotic myocytes in ischemic myocardium after 4 h reperfusion were reduced from 13.1% in vehicle group to 6.4% in Y-27632-treated group (P<0.01). Meanwhile, ischemia/reperfusion-induced downregulation of Bcl-2 in myocardium was remarkably attenuated in the treated animals. Ischemia/reperfusion resulted in remarkable elevation in serum levels of proinflammatory cytokines, interleukin-6 (IL-6), keratinocyte chemoattractant (KC) and granulocyte colony-stimulating factor (G-CSF), which was significantly suppressed by Y-27632. In addition, Y-27632 decreased ischemia/reperfusion-induced accumulation of neutrophils in the heart by 45% (P<0.01). Conclusions: These results suggest that Rho-kinase plays a pivotal role in myocardial ischemia/reperfusion injury. The cardiac protection provided by treatment with a selective Rho-kinase inhibitor is likely via anti-apoptotic effect and attenuation of ischemia/reperfusion-induced inflammatory responses. The finding of this study suggest a novel therapeutic approach to the treatment of acute myocardial ischemia/reperfusion injury.