1. CATS: A Tool for Clustering the Ensemble of Intrinsically Disordered Peptides on a Flat Energy Landscape
Jacob C Ezerski, Margaret S Cheung J Phys Chem B. 2018 Dec 13;122(49):11807-11816. doi: 10.1021/acs.jpcb.8b08852. Epub 2018 Nov 7.
We introduce the combinatorial averaged transient structure (CATS) clustering method as a means to cluster protein structure ensembles based on the distributions of protein backbone descriptor coordinates. In our study, we use phi and psi dihedral angle coordinates of the protein backbone as descriptors due to their translational and rotational invariance. The CATS method was developed to produce unique structure ensembles that are typically difficult to obtain from flat energy landscapes using a one-dimensional separation value (e.g., RMSD cutoff). Through the use of higher-dimensional descriptor coordinates, we remedy structure resolution shortcomings of standard clustering algorithms due to large RMSD fluctuations between structures. We compare the performance of CATS to an RMSD-based clustering method GROMOS, which may not be the best choice for IDP clustering since separation quality heavily relies on cutoff values instead of energy landscape minima. We demonstrate the performance of CATS and GROMOS by analyzing the all-atom molecular dynamics trajectories of the Tau/R2(273-284) fragment in solution with TMAO and urea osmolytes from prior studies. Our study reveals that the CATS method produces more unique clusters than the GROMOS method as a result of higher-dimensional distributions of the descriptor coordinates. The cluster centers produced by CATS correspond to local minima in the multidimensional potential mean force, which generates a structure ensemble that adequately samples the energy landscape.
2. Interactions between amyloid-β and Tau fragments promote aberrant aggregates: implications for amyloid toxicity
Thanh D Do, Nicholas J Economou, Ali Chamas, Steven K Buratto, Joan-Emma Shea, Michael T Bowers J Phys Chem B. 2014 Sep 25;118(38):11220-30. doi: 10.1021/jp506258g. Epub 2014 Sep 15.
We have investigated at the oligomeric level interactions between Aβ(25-35) and Tau(273-284), two important fragments of the amyloid-β and Tau proteins, implicated in Alzheimer's disease. We are able to directly observe the coaggregation of these two peptides by probing the conformations of early heteroligomers and the macroscopic morphologies of the aggregates. Ion-mobility experiment and theoretical modeling indicate that the interactions of the two fragments affect the self-assembly processes of both peptides. Tau(273-284) shows a high affinity to form heteroligomers with existing Aβ(25-35) monomer and oligomers in solution. The configurations and characteristics of the heteroligomers are determined by whether the population of Aβ(25-35) or Tau(273-284) is dominant. As a result, two types of aggregates are observed in the mixture with distinct morphologies and dimensions from those of pure Aβ(25-35) fibrils. The incorporation of some Tau into β-rich Aβ(25-35) oligomers reduces the aggregation propensity of Aβ(25-35) but does not fully abolish fibril formation. On the other hand, by forming complexes with Aβ(25-35), Tau monomers and dimers can advance to larger oligomers and form granular aggregates. These heteroligomers may contribute to toxicity through loss of normal function of Tau or inherent toxicity of the aggregates themselves.
3. Initiation of assembly of tau(273-284) and its ΔK280 mutant: an experimental and computational study
Luca Larini, Megan Murray Gessel, Nichole E LaPointe, Thanh D Do, Michael T Bowers, Stuart C Feinstein, Joan-Emma Shea Phys Chem Chem Phys. 2013 Jun 21;15(23):8916-28. doi: 10.1039/c3cp00063j. Epub 2013 Mar 20.
The microtubule associated protein tau is essential for the development and maintenance of the nervous system. Tau dysfunction is associated with a class of diseases called tauopathies, in which tau is found in an aggregated form. This paper focuses on a small aggregating fragment of tau, (273)GKVQIINKKLDL(284), encompassing the (PHF6*) region that plays a central role in tau aggregation. Using a combination of simulations and experiments, we probe the self-assembly of this peptide, with an emphasis on characterizing the early steps of aggregation. Ion-mobility mass spectrometry experiments provide a size distribution of early oligomers, TEM studies provide a time course of aggregation, and enhanced sampling molecular dynamics simulations provide atomistically detailed structural information about this intrinsically disordered peptide. Our studies indicate that a point mutation, as well the addition of heparin, lead to a shift in the conformations populated by the earliest oligomers, affecting the kinetics of subsequent fibril formation as well as the morphology of the resulting aggregates. In particular, a mutant associated with a K280 deletion (a mutation that causes a heritable form of neurodegeneration/dementia in the context of full length tau) is seen to aggregate more readily than its wild-type counterpart. Simulations and experiment reveal that the ΔK280 mutant peptide adopts extended conformations to a greater extent than the wild-type peptide, facilitating aggregation through the pre-structuring of the peptide into a fibril-competent structure.