Need Assistance?
  • US & Canada:
    +
  • UK: +

Temporin-L

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Temporin-L is an antibacterial peptide isolated from Rana temporaria. It has activity against gram-positive bacteria, gram-negative bacteria and fungi. It has hemolytic and cytotoxic activity.

Category
Functional Peptides
Catalog number
BAT-011332
CAS number
188713-81-7
Molecular Formula
C83H122N20O15
Molecular Weight
1640.0
IUPAC Name
(2S)-N-[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]-2-[[(2S)-2-[[(2S)-2-amino-3-phenylpropanoyl]amino]-3-methylbutanoyl]amino]pentanediamide
Synonyms
Phe-Val-Gln-Trp-Phe-Ser-Lys-Phe-Leu-Gly-Arg-Ile-Leu-NH2
Purity
>97%
Sequence
FVQWFSKFLGRIL-NH2
Storage
Store at -20°C
InChI
InChI=1S/C83H122N20O15/c1-9-50(8)70(82(118)96-61(71(87)107)38-47(2)3)103-76(112)58(33-23-37-90-83(88)89)93-68(106)45-92-73(109)62(39-48(4)5)97-77(113)63(41-52-26-15-11-16-27-52)98-74(110)59(32-21-22-36-84)94-80(116)66(46-104)101-78(114)64(42-53-28-17-12-18-29-53)99-79(115)65(43-54-44-91-57-31-20-19-30-55(54)57)100-75(111)60(34-35-67(86)105)95-81(117)69(49(6)7)102-72(108)56(85)40-51-24-13-10-14-25-51/h10-20,24-31,44,47-50,56,58-66,69-70,91,104H,9,21-23,32-43,45-46,84-85H2,1-8H3,(H2,86,105)(H2,87,107)(H,92,109)(H,93,106)(H,94,116)(H,95,117)(H,96,118)(H,97,113)(H,98,110)(H,99,115)(H,100,111)(H,101,114)(H,102,108)(H,103,112)(H4,88,89,90)/t50-,56-,58-,59-,60-,61-,62-,63-,64-,65-,66-,69-,70-/m0/s1
InChI Key
SDXHFGQTTLDWPF-VTKIVCRMSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(C)C)C(=O)N)NC(=O)C(CCCNC(=N)N)NC(=O)CNC(=O)C(CC(C)C)NC(=O)C(CC1=CC=CC=C1)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CC2=CC=CC=C2)NC(=O)C(CC3=CNC4=CC=CC=C43)NC(=O)C(CCC(=O)N)NC(=O)C(C(C)C)NC(=O)C(CC5=CC=CC=C5)N
1. Temporin B Forms Hetero-Oligomers with Temporin L, Modifies Its Membrane Activity, and Increases the Cooperativity of Its Antibacterial Pharmacodynamic Profile
Philip M Ferguson, Maria Clarke, Giorgia Manzo, Charlotte K Hind, Melanie Clifford, J Mark Sutton, Christian D Lorenz, David A Phoenix, A James Mason Biochemistry. 2022 Jun 7;61(11):1029-1040. doi: 10.1021/acs.biochem.1c00762. Epub 2022 May 24.
The pharmacodynamic profile of antimicrobial peptides (AMPs) and their in vivo synergy are two factors that are thought to restrict resistance evolution and ensure their conservation. The frog Rana temporaria secretes a family of closely related AMPs, temporins A-L, as an effective chemical dermal defense. The antibacterial potency of temporin L has been shown to increase synergistically in combination with both temporins B and A, but this is modest. Here we show that the less potent temporin B enhances the cooperativity of the in vitro antibacterial activity of the more potent temporin L against EMRSA-15 and that this may be associated with an altered interaction with the bacterial plasma membrane, a feature critical for the antibacterial activity of most AMPs. Addition of buforin II, a histone H2A fragment, can further increase the cooperativity. Molecular dynamics simulations indicate temporins B and L readily form hetero-oligomers in models of Gram-positive bacterial plasma membranes. Patch-clamp studies show transmembrane ion conductance is triggered with lower amounts of both peptides and more quickly when used in combination, but conductance is of a lower amplitude and pores are smaller. Temporin B may therefore act by forming temporin L/B hetero-oligomers that are more effective than temporin L homo-oligomers at bacterial killing and/or by reducing the probability of the latter forming until a threshold concentration is reached. Exploration of the mechanism of synergy between AMPs isolated from the same organism may therefore yield antibiotic combinations with advantageous pharmacodynamic properties.
2. Interaction of Temporin-L Analogues with the E. coli FtsZ Protein
Angela Di Somma, Carolina Canè, Antonio Moretta, Angela Duilio Antibiotics (Basel). 2021 Jun 11;10(6):704. doi: 10.3390/antibiotics10060704.
The research of new therapeutic agents to fight bacterial infections has recently focused on the investigation of antimicrobial peptides (AMPs), the most common weapon that all organisms produce to prevent invasion by external pathogens. Among AMPs, the amphibian Temporins constitute a well-known family with high antibacterial properties against Gram-positive and Gram-negative bacteria. In particular, Temporin-L was shown to affect bacterial cell division by inhibiting FtsZ, a tubulin-like protein involved in the crucial step of Z-ring formation at the beginning of the division process. As FtsZ represents a leading target for new antibacterial compounds, in this paper we investigated in detail the interaction of Temporin L with Escherichia coli FtsZ and designed two TL analogues in an attempt to increase peptide-protein interactions and to better understand the structural determinants leading to FtsZ inhibition. The results demonstrated that the TL analogues improved their binding to FtsZ, originating stable protein-peptide complexes. Functional studies showed that both peptides were endowed with a high capability of inhibiting both the enzymatic and polymerization activities of the protein. Moreover, the TL analogues were able to inhibit bacterial growth at low micromolar concentrations. These observations may open up the way to the development of novel peptide or peptidomimetic drugs tailored to bind FtsZ, hampering a crucial process of bacterial life that might be proposed for future pharmaceutical applications.
3. First-in-Class Cyclic Temporin L Analogue: Design, Synthesis, and Antimicrobial Assessment
Rosa Bellavita, et al. J Med Chem. 2021 Aug 12;64(15):11675-11694. doi: 10.1021/acs.jmedchem.1c01033. Epub 2021 Jul 23.
The pharmacodynamic and pharmacokinetic properties of bioactive peptides can be modulated by introducing conformational constraints such as intramolecular macrocyclizations, which can involve either the backbone and/or side chains. Herein, we aimed at increasing the α-helicity content of temporin L, an isoform of an intriguing class of linear antimicrobial peptides (AMPs), endowed with a wide antimicrobial spectrum, by the employment of diverse side-chain tethering strategies, including lactam, 1,4-substituted [1,2,3]-triazole, hydrocarbon, and disulfide linkers. Our approach resulted in a library of cyclic temporin L analogues that were biologically assessed for their antimicrobial, cytotoxic, and antibiofilm activities, leading to the development of the first-in-class cyclic peptide related to this AMP family. Our results allowed us to expand the knowledge regarding the relationship between the α-helical character of temporin derivatives and their biological activity, paving the way for the development of improved antibiotic cyclic AMP analogues.
Online Inquiry
Verification code
Inquiry Basket