Need Assistance?
  • US & Canada:
    +
  • UK: +

Thiocillin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Thiocillin is a thiopeptide antibiotic isolated from Bacillus cereus.

Category
Functional Peptides
Catalog number
BAT-011375
Molecular Formula
C49H51N13O8S6
Molecular Weight
1142.40
IUPAC Name
2-[2-[(12S,19R,26Z,29S)-26-ethylidene-29-[(1R)-1-hydroxyethyl]-14,21,28,31-tetraoxo-12,19-di(propan-2-yl)-10,17,24,34-tetrathia-6,13,20,27,30,35,36,37,38-nonazahexacyclo[30.2.1.18,11.115,18.122,25.02,7]octatriaconta-1(35),2(7),3,5,8,11(38),15,18(37),22,25(36),32-undecaen-5-yl]-1,3-thiazol-4-yl]-N-[(Z)-1-[[(2S)-2-hydroxypropyl]amino]-1-oxobut-2-en-2-yl]-1,3-thiazole-4-carboxamide
Synonyms
Ser-Cys-Thr-Thr-Cys-Val-Cys-Thr-Cys-Ser-Cys-Cys-Thr-Thr
Sequence
SCTTCVCTCSCCTT
InChI
InChI=1S/C49H51N13O8S6/c1-9-25(38(65)50-13-22(7)63)52-39(66)29-16-73-47(57-29)33-19-74-46(59-33)27-12-11-24-37(51-27)28-14-75-48(54-28)34(20(3)4)60-41(68)32-18-76-49(58-32)35(21(5)6)61-40(67)31-17-72-45(56-31)26(10-2)53-43(70)36(23(8)64)62-42(69)30-15-71-44(24)55-30/h9-12,14-23,34-36,63-64H,13H2,1-8H3,(H,50,65)(H,52,66)(H,53,70)(H,60,68)(H,61,67)(H,62,69)/b25-9-,26-10-/t22-,23+,34-,35+,36-/m0/s1
InChI Key
IXZWXEVFYZMXCG-ZRBNMRFGSA-N
Canonical SMILES
CC=C1C2=NC(=CS2)C(=O)NC(C3=NC(=CS3)C(=O)NC(C4=NC(=CS4)C5=C(C=CC(=N5)C6=NC(=CS6)C7=NC(=CS7)C(=O)NC(=CC)C(=O)NCC(C)O)C8=NC(=CS8)C(=O)NC(C(=O)N1)C(C)O)C(C)C)C(C)C
1. Heterologous Synthesis and Characterization of Thiocillin IV
Young-Jin Son, Hee-Jong Hwang, Yonghoon Kwon ACS Chem Biol. 2023 Feb 17;18(2):265-272. doi: 10.1021/acschembio.2c00612. Epub 2023 Jan 24.
Micrococcin P1 and P2 are thiopeptides with a wide range of biological functions including antibacterial and antimalarial activities. We previously demonstrated optimized enzymatic sequences for the exclusive and scalable biosynthesis of micrococcin P2. Thiocillin IV is predicted to be the congener of O-methylated micrococcin P2, but the exact structure has not been elucidated. In this study, we report the first scalable biosynthesis and full structural characterization of thiocillin IV, a 26-membered thiopeptide. This was achieved by generating a recombinant plasmid by inserting tclO, a gene encoding an O-methyltransferase, and genes responsible for micrococcin P2 production and incorporating them into a Bacillus strain. With the incorporation of precursor peptide genes and optimal culture conditions, production reached 2.4 mg/L of culture. The purified thiocillin IV structure was identified as O-methylated micrococcin P2 at the 8-Thr position, and its promising biological activity toward various Gram-positive pathogens was observed. This study provides tclO-mediated site-selective methylation and opens a biotechnological opportunity to produce selective thiopeptides.
2. Thiocillin and micrococcin exploit the ferrioxamine receptor of Pseudomonas aeruginosa for uptake
Derek C K Chan, Lori L Burrows J Antimicrob Chemother. 2021 Jul 15;76(8):2029-2039. doi: 10.1093/jac/dkab124.
Background: Thiopeptides are a class of antibiotics that are active against Gram-positive bacteria and inhibit translation. They were considered inactive against Gram-negative bacteria due to their inability to cross the outer membrane. However, we discovered previously that a member of this class, thiostrepton (TS), has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. TS hijacks the pyoverdine siderophore receptors of P. aeruginosa to cross the outer membrane and synergizes with iron chelators. Objectives: To test other thiopeptides for antimicrobial activity against P. aeruginosa and determine their mechanism of uptake, action and spectrum of activity. Methods: Eight thiopeptides were screened in chequerboard assays against a mutant of P. aeruginosa PA14 lacking both pyoverdine receptors. Thiopeptides that retain activity against a pyoverdine receptor-null mutant may use alternative siderophore receptors for entry. Susceptibility testing against siderophore receptor mutants was used to determine thiopeptide mechanism of uptake. Results: The thiopeptides thiocillin (TC) and micrococcin (MC) use the ferrioxamine siderophore receptor (FoxA) for uptake and inhibit the growth of P. aeruginosa at low micromolar concentrations. The activity of TC required the TonB-ExbBD system used to energize siderophore uptake. TC acted through its canonical mechanism of action of translation inhibition. Conclusions: Multiple thiopeptides have antimicrobial activity against P. aeruginosa, countering the historical assumption that they cannot cross the outer membrane. These results demonstrate the potential for thiopeptides to act as antipseudomonal antibiotics.
3. Total synthesis of micrococcin P1 and thiocillin I enabled by Mo(vi) catalyst
Siddhartha Akasapu, Aaron B Hinds, Wyatt C Powell, Maciej A Walczak Chem Sci. 2018 Dec 3;10(7):1971-1975. doi: 10.1039/c8sc04885a. eCollection 2019 Feb 21.
Thiopeptides are a class of potent antibiotics with promising therapeutic potential. We developed a novel Mo(vi)-oxide/picolinic acid catalyst for the cyclodehydration of cysteine peptides to form thiazoline heterocycles. With this powerful tool in hand, we completed the total syntheses of two representative thiopeptide antibiotics: micrococcin P1 and thiocillin I. These two concise syntheses (15 steps, longest linear sequence) feature a C-H activation strategy to install the trisubstituted pyridine core and thiazole groups. The synthetic material displays promising antimicrobial properties measured against a series of Gram-positive bacteria.
Online Inquiry
Verification code
Inquiry Basket