1. Insights into the Mode of Action of the Sactibiotic Thuricin CD
Harsh Mathur, Vincenzo Fallico, Paula M O'Connor, Mary C Rea, Paul D Cotter, Colin Hill, R Paul Ross Front Microbiol. 2017 Apr 20;8:696. doi: 10.3389/fmicb.2017.00696. eCollection 2017.
Thuricin CD is a two-component bacteriocin, consisting of the peptides Trnα and Trnβ, and belongs to the newly designated sactibiotic subclass of bacteriocins. While it is clear from studies conducted thus far that it is a narrow-spectrum bacteriocin, requiring the synergistic activity of the two peptides, the precise mechanism of action of thuricin CD has not been elucidated. This study used a combination of flow cytometry and traditional culture-dependent assays to ascertain the effects of the thuricin CD peptides on the morphology, physiology and viability of sensitive Bacillus firmus DPC6349 cells. We show that both Trnα and Trnβ are membrane-acting and cause a collapse of the membrane potential, which could not be reversed even under membrane-repolarizing conditions. Furthermore, the depolarizing action of thuricin CD is accompanied by reductions in cell size and granularity, producing a pattern of physiological alterations in DPC6349 cells similar to those triggered by the pore-forming single-component bacteriocin Nisin A, and two-component lacticin 3147. Taken together, these results lead us to postulate that the lytic activity of thuricin CD involves the insertion of thuricin CD peptides into the membrane of target cells leading to permeabilization due to pore formation and consequent flux of ions across the membrane, resulting in membrane depolarization and eventual cell death.
2. Bioavailability of the anti-clostridial bacteriocin thuricin CD in gastrointestinal tract
Mary C Rea, Debebe Alemayehu, Pat G Casey, Paula M O'Connor, Peadar G Lawlor, Maria Walsh, Fergus Shanahan, Barry Kiely, R Paul Ross, Colin Hill Microbiology (Reading). 2014 Feb;160(Pt 2):439-445. doi: 10.1099/mic.0.068767-0. Epub 2013 Nov 28.
Thuricin CD is a two component narrow spectrum bacteriocin comprising two peptides with targeted activity against Clostridium difficile. This study examined the bioavailability of thuricin with a view to developing it as an effective antimicrobial against intestinal infection. One of the peptides, Trn-β, was found to be degraded by the gastric enzymes pepsin and α-chymotrypsin both in vitro and in vivo, whereas Trn-α was resistant to digestion by these enzymes and hence was detected in the intestinal porcine digesta following oral ingestion by pigs. In order to determine if spores of the producing organism Bacillus thuringiensis DPC 6431 could be used to deliver the bacteriocin to the gut, spores were fed to 30 mice (approx. 10(8)-2×10(8) per animal) and their germination, growth and production of thuricin in the gastrointestinal tract (GIT) of the animals was monitored. Almost 99 % of the spores delivered to the GIT were excreted in the first 24 h and neither Trn-α nor Trn-β was detected in the gut or faecal samples of the test mice, indicating that ingestion of B. thuringiensis spores may not be a suitable vehicle for the delivery of thuricin CD. When thuricin CD was delivered rectally to mice (n = 40) and C. difficile shedding monitored at 1, 6, 12 and 24 h post-treatment, there was a >95 % (>1.5 log units) reduction of C. difficile 027 in the colon contents of infected mice (n = 10) 1 h post-treatment compared with the control group (n = 10; P<0.001). Furthermore, 6 h post-treatment there was a further 1.5 log reduction in C. difficile numbers (n = 10) relative to the control group (n = 10; P<0.05). These results would suggest that rectal administration of thuricin may be a promising mode of delivery of thuricin CD to the colon.
3. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile
Mary C Rea, Clarissa S Sit, Evelyn Clayton, Paula M O'Connor, Randy M Whittal, Jing Zheng, John C Vederas, R Paul Ross, Colin Hill Proc Natl Acad Sci U S A. 2010 May 18;107(20):9352-7. doi: 10.1073/pnas.0913554107. Epub 2010 Apr 30.
The last decade has seen numerous outbreaks of Clostridium difficile-associated disease (CDAD), which presented significant challenges for healthcare facilities worldwide. We have identified and purified thuricin CD, a two-component antimicrobial that shows activity against C. difficile in the nanomolar range. Thuricin CD is produced by Bacillus thuringiensis DPC 6431, a bacterial strain isolated from a human fecal sample, and it consists of two distinct peptides, Trn-alpha and Trn-beta, that act synergistically to kill a wide range of clinical C. difficile isolates, including ribotypes commonly associated with CDAD (e.g., ribotype 027). However, this bacteriocin thuricin CD has little impact on most other genera, including many gastrointestinal commensals. Complete amino acid sequencing using infusion tandem mass spectrometry indicated that each peptide is posttranslationally modified at its respective 21st, 25th, and 28th residues. Solution NMR studies on [(13)C,(15)N] Trn-alpha and [(13)C,(15)N]Trn-beta were used to characterize these modifications. Analysis of multidimensional NOESY data shows that specific cysteines are linked to the alpha-carbons of the modified residues, forming three sulfur to alpha-carbon bridges. Complete sequencing of the thuricin CD gene cluster revealed genes capable of encoding two S'-adenosylmethionine proteins that are characteristically associated with unusual posttranslational modifications. Thuricin CD is a two-component antimicrobial peptide system with sulfur to alpha-carbon linkages, and it may have potential as a targeted therapy in the treatment of CDAD while also reducing collateral impact on the commensal flora.