Need Assistance?
  • US & Canada:
    +
  • UK: +

TLQP 21

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

TLQP 21 is a VGF-derived peptide. TLQP 21 has been shown to protect cerebellar granule cells (CGCs) from serum and potassium deprivation-induced apoptosis. TLQP 21 has the potential for the prevention of early phase diet-induced diabetes.

Category
Peptide Inhibitors
Catalog number
BAT-010139
CAS number
869988-94-3
Molecular Formula
C107H170N40O26
Molecular Weight
2432.7
TLQP 21
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-1-[(2S)-5-amino-2-[[(2S)-2-[[(2S,3R)-2-amino-3-hydroxybutanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]propanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-phenylpropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]propanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]propanoyl]amino]-5-carbamimidamidopentanoic acid
Synonyms
TLQP 21; TLQP21; TLQP-21
Appearance
White Lyophilized Solid
Purity
≥95%
Density
1.6±0.1 g/cm3
Sequence
TLQPPASSRRRHFHHALPPAR
Storage
Store at -20°C
InChI
InChI=1S/C107H170N40O26/c1-54(2)40-69(140-98(167)82(109)59(8)150)90(159)134-67(30-31-81(108)151)99(168)146-38-18-28-79(146)101(170)144-36-16-27-78(144)97(166)130-58(7)85(154)142-75(49-148)95(164)143-76(50-149)94(163)133-65(23-13-33-122-105(112)113)87(156)131-64(22-12-32-121-104(110)111)86(155)132-66(24-14-34-123-106(114)115)88(157)137-72(44-62-47-119-52-126-62)92(161)136-70(42-60-20-10-9-11-21-60)91(160)139-73(45-63-48-120-53-127-63)93(162)138-71(43-61-46-118-51-125-61)89(158)128-56(5)84(153)141-74(41-55(3)4)100(169)147-39-19-29-80(147)102(171)145-37-17-26-77(145)96(165)129-57(6)83(152)135-68(103(172)173)25-15-35-124-107(116)117/h9-11,20-21,46-48,51-59,64-80,82,148-150H,12-19,22-45,49-50,109H2,1-8H3,(H2,108,151)(H,118,125)(H,119,126)(H,120,127)(H,128,158)(H,129,165)(H,130,166)(H,131,156)(H,132,155)(H,133,163)(H,134,159)(H,135,152)(H,136,161)(H,137,157)(H,138,162)(H,139,160)(H,140,167)(H,141,153)(H,142,154)(H,143,164)(H,172,173)(H4,110,111,121)(H4,112,113,122)(H4,114,115,123)(H4,116,117,124)/t56-,57-,58-,59+,64-,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,82-/m0/s1
InChI Key
PWWMOXVVMRPYJS-IWCKOKPFSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCC(=O)N)C(=O)N1CCCC1C(=O)N2CCCC2C(=O)NC(C)C(=O)NC(CO)C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC3=CNC=N3)C(=O)NC(CC4=CC=CC=C4)C(=O)NC(CC5=CNC=N5)C(=O)NC(CC6=CNC=N6)C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)N7CCCC7C(=O)N8CCCC8C(=O)NC(C)C(=O)NC(CCCNC(=N)N)C(=O)O)NC(=O)C(C(C)O)N
1. TLQP-21 protects human umbilical vein endothelial cells against high-glucose-induced apoptosis by increasing G6PD expression
Yanyin Hua,Jiangbo Ma,Yubo Xing,Yu Zhao,Jie Sheng,Chao Ni,Lijun Wang,Wei Zhang PLoS One . 2013 Nov 21;8(11):e79760. doi: 10.1371/journal.pone.0079760.
Hyperglycemia causes oxidative stress that could damage vascular endothelial cells, leading to cardiovascular complications. The Vgf gene was identified as a nerve growth factor-responsive gene, and its protein product, VGF, is characterized by the presence of partially cleaved products. One of the VGF-derived peptides is TLQP-21, which is composed of 21 amino acids (residues 556-576). Past studies have reported that TLQP-21 could stimulate insulin secretion in pancreatic cells and protect these cells from apoptosis, which suggests that TLQP-21 has a potential function in diabetes therapy. Here, we explore the protective role of TLQP-21 against the high glucose-mediated injury of vascular endothelial cells. Using human umbilical vascular endothelial cells (HUVECs), we demonstrated that TLQP-21 (10 or 50 nM) dose-dependently prevented apoptosis under high-glucose (30 mmol/L) conditions (the normal glucose concentration is 5.6 mmol/L). TLQP-21 enhanced the expression of NAPDH, resulting in upregulation of glutathione (GSH) and a reduction in the levels of reactive oxygen species (ROS). TLQP-21 also upregulated the expression of glucose-6-phosphate dehydrogenase (G6PD), which is known as the main source of NADPH. Knockdown of G6PD almost completely blocked the increase of NADPH induced by TLQP-21, indicating that TLQP-21 functions mainly through G6PD to promote NADPH generation. In conclusion, TLQP-21 could increase G6PD expression, which in turn may increase the synthesis of NADPH and GSH, thereby partially restoring the redox status of vascular endothelial cells under high glucose injury. We propose that TLQP-21 is a promising drug for diabetes therapy.
2. Pharmacological and Biochemical Characterization of TLQP-21 Activation of a Binding Site on CHO Cells
Laura Rizzi,Antonio Torsello,Vittorio Locatelli,Jean Martinez,Elena Bresciani,Pascal Verdié,Anna Binda,Ilaria Rivolta,Giuseppe Biagini,Corrado Ghè,Jean-Alain Fehrentz,Pamela Petrocchi Passeri,Laura Molteni,Roberta Possenti,Giampiero Muccioli,Robert J Omeljaniuk Front Pharmacol . 2017 Mar 30;8:167. doi: 10.3389/fphar.2017.00167.
VGF is a propeptide of 617 amino acids expressed throughout the central and the peripheral nervous system. VGF and peptides derived from its processing have been found in dense core vesicles and are released from neuronal and neuroendocrine cells via the regulated secretory pathway. Among VGF-derived neuropeptides, TLQP-21 (VGF556-576) has raised a huge interest and is one of most studied. TLQP-21 is a multifunctional neuropeptide involved in the control of several physiological functions, potentially including energy homeostasis, pain modulation, stress responsiveness and reproduction. Although little information is available about its receptor and the intracellular mechanisms mediating its biological effects, recent reports suggest that TLQP-21 may bind to the complement receptors C3aR1 and/or gC1qR. The first aim of this study was to ascertain the existence and nature of TLQP-21 binding sites in CHO cells. Secondly, we endeavored to characterize the ligand binding to these sites by using a small panel of VGF-derived peptides. And finally, we investigated the influence of TLQP-21 on selected intracellular signaling pathways. We report that CHO cells express a single class of saturable and specific binding sites for TLQP-21 with an affinity and capacity ofKd= 0.55 ± 0.05 × 10-9M andBmax =81.7 ± 3.9 fmol/mg protein, respectively. Among the many bioactive products derived from the C-terminal region of VGF that we tested, TLQP-21 was the most potent in stimulating intracellular calcium mobilization in CHO cells; this effect is primarily due to its C-terminal fragment (HFHH-10). TLQP-21 induced rapid and transient dephosphorylation of phospholipase Cγ1 and phospholipase A2. Generation of IP3and diacylglycerol was crucial for TLQP-21 bioactivity. In conclusion, our results suggest that the receptor stimulated by TLQP-21 belongs to the family of the Gq-coupled receptors, and its activation first increases membrane-lipid derived second messengers which thereby induce the mobilization of Ca2+from the endoplasmic reticulum followed by a slower store-operated Ca2+entry from outside the cell.
3. Peptide/Receptor Co-evolution Explains the Lipolytic Function of the Neuropeptide TLQP-21
Lauren J Laskowski,Paolo Piaggi,Cheryl Cero,Megin E Nguyen,Mihaela Pavlicev,Pedro Rodriguez,Sushil K Mahata,Bhavani S Sahu,Alessandro Bartolomucci,Maria Razzoli,Louis Muglia,John D McCorvy,Leslie J Baier,Ruijun Han,Yuk Y Sham,Scott O'Grady Cell Rep . 2019 Sep 3;28(10):2567-2580.e6. doi: 10.1016/j.celrep.2019.07.101.
Structural and functional diversity of peptides and GPCR result from long evolutionary processes. Even small changes in sequence can alter receptor activation, affecting therapeutic efficacy. We conducted a structure-function relationship study on the neuropeptide TLQP-21, a promising target for obesity, and its complement 3a receptor (C3aR1). After having characterized the TLQP-21/C3aR1 lipolytic mechanism, a homology modeling and molecular dynamics simulation identified the TLQP-21 binding motif and C3aR1 binding site for the human (h) and mouse (m) molecules. mTLQP-21 showed enhanced binding affinity and potency for hC3aR1 compared with hTLQP-21. Consistently, mTLQP-21, but not hTLQP-21, potentiates lipolysis in human adipocytes. These findings led us to uncover five mutations in the C3aR1 binding pocket of the rodent Murinae subfamily that are causal for enhanced calculated affinity and measured potency of TLQP-21. Identifying functionally relevant peptide/receptor co-evolution mechanisms can facilitate the development of innovative pharmacotherapies for obesity and other diseases implicating GPCRs.
4. Clearance kinetics of the VGF-derived neuropeptide TLQP-21
ZengKui Guo,Cheryl Cero,Gianluigi Veglia,John M Miles,Raffaello Verardi,Bhavani S Sahu,Richard D Di Marchi,Alessandro Bartolomucci,Rongjun He,Maria Razzoli,Brian Finan Neuropeptides . 2018 Oct;71:97-103. doi: 10.1016/j.npep.2018.06.003.
TLQP-21 is a multifunctional neuropeptide and a promising new medicinal target for cardiometabolic and neurological diseases. However, to date its clearance kinetics and plasma stability have not been studied. The presence of four arginine residues led us to hypothesize that its half-life is relatively short. Conversely, its biological activities led us to hypothesize that the peptide is still taken up by adipose tissues effectively. [125I]TLQP-21 was i.v. administered in rats followed by chasing the plasma radioactivity and assessing tissue uptake. Plasma stability was measured using LC-MS. In vivo lipolysis was assessed by the palmitate rate of appearance.Results:A small single i.v. dose of [125I]TLQP-21 had a terminal half-life of 110 min with a terminal clearance rate constant, kt, of 0.0063/min, and an initial half-life of 0.97 min with an initial clearance rate constant, ki, of 0.71/min. The total net uptake by adipose tissue accounts for 4.4% of the entire dose equivalent while the liver, pancreas and adrenal gland showed higher uptake. Uptake by the brain was negligible, suggesting that i.v.-injected peptide does not cross the blood-brain-barrier. TLQP-21 sustained isoproterenol-stimulated lipolysis in vivo. Finally, TLQP-21 was rapidly degraded producing several N-terminal and central sequence fragments after 10 and 60 min in plasma in vitro. This study investigated the clearance and stability of TLQP-21 peptide for the first time. While its pro-lipolytic effect supports and extends previous findings, its short half-life and sequential cleavage in the plasma suggest strategies for chemical modifications in order to enhance its stability and therapeutic efficacy.
Online Inquiry
Verification code
Inquiry Basket