(Trp4)-Octreotide
Need Assistance?
  • US & Canada:
    +
  • UK: +

(Trp4)-Octreotide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

(Trp4)-Octreotide is an impurity of octreotide.

Category
Others
Catalog number
BAT-014558
Molecular Formula
C49H66N10O10S2
Molecular Weight
1019.26
IUPAC Name
(4R,7S,10S,13S,16S,19R)-10-(4-aminobutyl)-19-[[(2R)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-N-[(2R,3R)-1,3-dihydroxybutan-2-yl]-7-[(1R)-1-hydroxyethyl]-13-(1H-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxamide
Synonyms
H-D-Phe-Cys-Phe-Trp-Lys-Thr-Cys-L-threoninol (Disulfide bridge: Cys2-Cys7); H-D-Phe-Cys-Phe-Trp-Lys-Thr-Cys-Thr-ol (Disulfide bridge: Cys2-Cys7); D-phenylalanyl-L-cysteinyl-L-phenylalanyl-L-tryptophyl-L-lysyl-L-threonyl-L-cysteinyl-L-threoninol (2->7)-disulfide
Purity
≥95%
Density
1.4±0.1 g/cm3
Boiling Point
1447.2±65.0°C at 760 mmHg
Sequence
FCFWKTCT-ol (Disulfide bridge: Cys2-Cys7)
Storage
Store at -20°C
InChI
InChI=1S/C49H66N10O10S2/c1-28(61)39(25-60)56-48(68)41-27-71-70-26-40(57-43(63)34(51)21-30-13-5-3-6-14-30)47(67)54-37(22-31-15-7-4-8-16-31)45(65)55-38(23-32-24-52-35-18-10-9-17-33(32)35)46(66)53-36(19-11-12-20-50)44(64)59-42(29(2)62)49(69)58-41/h3-10,13-18,24,28-29,34,36-42,52,60-62H,11-12,19-23,25-27,50-51H2,1-2H3,(H,53,66)(H,54,67)(H,55,65)(H,56,68)(H,57,63)(H,58,69)(H,59,64)/t28-,29-,34-,36+,37+,38+,39-,40+,41+,42+/m1/s1
InChI Key
DEQANNDTNATYII-JBJZNJHGSA-N
Canonical SMILES
CC(C1C(=O)NC(CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N1)CCCCN)CC2=CNC3=CC=CC=C32)CC4=CC=CC=C4)NC(=O)C(CC5=CC=CC=C5)N)C(=O)NC(CO)C(C)O)O
1. Conformational analyses of sandostatin analogs containing stereochemical changes in positions 6 or 8
R H Mattern, L Zhang, J K Rueter, M Goodman Biopolymers. 2000 May;53(6):506-22. doi: 10.1002/(SICI)1097-0282(200005)53:63.0.CO;2-3.
We report the conformational analysis by 1H nmr in DMSO and computer simulations involving distance geometry and molecular dynamics simulations of analogs of the cyclic octapeptide D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Thr6-Cys 7]-Thr8-ol (sandostatin, octreotide). The analogs D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Xaa6-Cys 7]-Xbb8-NH2 (Xaa = allo-Thr, D-allo-Thr, D-beta-Hyv, beta-Hyv, D-Thr, and Xbb = Thr or Xaa = Thr and Xbb = allo-Thr, D-allo-Thr, beta-Hyv, D-Thr) contain stereochemical changes in the Thr residues in positions 6 and 8, which allow us to investigate the influence of the stereochemistry within these residues on conformation and binding affinity. The molecular dynamics simulations provide insight into the conformational flexibility of these analogs. The compounds with (S)-configuration at the C(alpha) of residue 6 adopt beta-sheet structures containing a type II' beta-turn with D-Trp in the i+1 position, and these conformations are "folded" about residues 6 and 3. The structures are very similar to those observed for sandostatin, and the disulfide bridge results in a close proximity of the H(alpha) protons of residues 7 and 2, which confirms earlier observations that a disulfide bridge is a good mimic for a cis peptide bond. The compounds with (R)-configuration at the C(alpha) of residue 6 adopt considerably different backbone conformations. The structures observed for these analogs contain either a beta-turn about residue Lys and Xaa6 or a gamma-turn about the Xaa6 residue. These compounds do not exhibit significant binding to the somatostatin receptors, while the compounds with (S) configuration in position 6 bind potently to the sst2, 3, and 5 receptors. The nmr spectra of analogs with (R) or (S) configuration at the C(alpha) of residue 8 are strikingly similar to each other. We have demonstrated that the chemical shifts of protons of residues 3, 4, 5, and 6, which are part of the type II' beta-turn, and especially the effect on the Lys gamma-protons are considerably different in active molecules as compared to inactive analogs. Since the presence of a type II' beta-turn is crucial for the binding to the receptors, the chemical shifts, the amide temperature coefficients of the Thr residue and the medium strength NOE between LysNH and ThrNH can be extremely useful as an initial screening tool to separate the active molecules from inactive analogs.
2. Multiconformational NMR analysis of sandostatin (octreotide): equilibrium between beta-sheet and partially helical structures
G Melacini, Q Zhu, M Goodman Biochemistry. 1997 Feb 11;36(6):1233-41. doi: 10.1021/bi962497o.
This paper reports a detailed conformational analysis by 1H NMR (DMSO-d6, 300 K) and molecular modeling of the octapeptide D-Phe1-Cys2-Phe3-D-Trp4-Lys5-Thr6-Cys7+ ++-Thr8-ol (disulfide bridged) known as sandostatin (or SMS 201-995 or octreotide) with both somatostatin-like and opioid-like bioactivities. This is the initial report on sandostatin showing that attempts to explain all NMR data using a single average conformation reveal several important inconsistencies including severe violations of mutually exclusive backbone-to-backbone NOEs. The inconsistencies are solved by assuming an equilibrium between antiparallel beta-sheet structures and conformations in which the C-terminal residues form a 3(10) helix-like fold (helical ensemble). This conformational equilibrium is consistent with previous X-ray diffraction investigations which show that sandostatin can adopt both the beta-sheet and the 3(10) helix-like secondary structure folds. In addition, indications of a conformational equilibrium between beta-sheet and helical structures are also found in solvent systems different from DMSO-d6 and for other highly bioactive analogs of sandostatin. In these cases a proper multiconformational NMR refinement is important in order to avoid conformational averaging artifacts. Finally, using the known models for somatostatin-like and opioid-like bioactivities of sandostatin analogs, the present investigation shows the potentials of the proposed structures for the design of novel sandostatin-based conformationally restricted peptidomimetics. These analogs are expected to refine the pharmacophore models for sandostatin bioactivities.
3. Syntheses and biological activities of sandostatin analogs containing stereochemical changes in positions 6 or 8
J K Rueter, R H Mattern, L Zhang, J Taylor, B Morgan, D Hoyer, M Goodman Biopolymers. 2000 May;53(6):497-505. doi: 10.1002/(SICI)1097-0282(200005)53:63.0.CO;2-Y.
In a continuation of our research efforts on the design and synthesis of novel peptidomimetic structures, we have synthesized a series of sandostatin amide analogs in which stereoisomers of threonine and beta-hydroxyvaline(beta-Hyv) are employed. The analogs D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Xaa6-Cys 7]-Xbb8-NH2 (Xaa = allo-Thr, D-allo-Thr, D-beta-Hyv, beta-Hyv, D-Thr, and Xbb = Thr or Xaa = Thr and Xbb = allo-Thr, D-allo-Thr, beta-Hyv, D-Thr) explore the effects on biological activity of stereochemical modifications and beta-methylation at positions 6 or 8. By these modifications, we examine the role of the two residues in binding to somatostatin receptors. We describe the synthesis and biological activity of these analogs. In combination with the results of the conformational analysis, this study provides new insights into the structural requirements for the binding affinity of somatostatin amide analogs to somatostatin receptors [Mattern et al., Conformational analyses of sandostatin analogs containing stereochemical changes in positions 6 or 8].
Online Inquiry
Verification code
Inquiry Basket