1. In vitro and in vivo pharmacological characterization of the novel UT receptor ligand [Pen5,DTrp7,Dab8]urotensin II(4-11) (UFP-803)
David J Rowbotham, Severo Salvadori, David G Lambert, Adelheid L Roth, Domenico Regoli, Remo Guerrini, Stephen A Douglas, Girolamo Calò, Valeria Camarda, Erika Marzola, Raffaella Vergura, Wei Song, Paolo Cavanni, Jonathan P Thompson, Martina Spagnol Br J Pharmacol . 2006 Jan;147(1):92-100. doi: 10.1038/sj.bjp.0706438.
The novel urotensin-II (U-II) receptor (UT) ligand, [Pen(5),DTrp(7),Dab(8)]U-II(4-11) (UFP-803), was pharmacologically evaluated and compared with urantide in in vitro and in vivo assays. In the rat isolated aorta, UFP-803 was inactive alone but, concentration dependently, displaced the contractile response to U-II to the right, revealing a competitive type of antagonism and a pA(2) value of 7.46. In the FLIPR [Ca(2+)](i) assay, performed at room temperature in HEK293(hUT) and HEK293(rUT) cells, U-II increased [Ca(2+)](i) with pEC(50) values of 8.11 and 8.48. Urantide and UFP-803 were inactive as agonists, but antagonized the actions of U-II by reducing, in a concentration-dependent manner, the agonist maximal effects with apparent pK(B) values in the range of 8.45-9.05. In a separate series of experiments performed at 37 degrees C using a cuvette-based [Ca(2+)](i) assay and CHO(hUT) cells, urantide mimicked the [Ca(2+)](i) stimulatory effect of U-II with an intrinsic activity (alpha) of 0.80, while UFP-803 displayed a small (alpha=0.21) but consistent residual agonist activity. When the same experiments were repeated at 22 degrees C (a temperature similar to that in FLIPR experiments), urantide displayed a very small intrinsic activity (alpha=0.11) and UFP-803 was completely inactive as an agonist. In vivo in mice, UFP-803 (10 nmol kg(-1)) antagonized U-II (1 nmol kg(-1))-induced increase in plasma extravasation in various vascular beds, while being inactive alone. In conclusion, UFP-803 is a potent UT receptor ligand which displays competitive/noncompetitive antagonist behavior depending on the assay. While UFP-803 is less potent than urantide, it displayed reduced residual agonist activity and as such may be a useful pharmacological tool.
2. In vitro siRNA-mediated knockdown of the UT receptor: implications of density on the efficacy of a range of UT ligands
Benjamin D Hunt, David G Lambert, Leong L Ng Naunyn Schmiedebergs Arch Pharmacol . 2012 Jun;385(6):651-6. doi: 10.1007/s00210-012-0728-0.
Urotensin-II (U-II) is the peptide agonist for the U-II receptor (UT). Putative UT antagonists, urantide and UFP-803, have been found to have variable efficacy in a range of assays. We have used siRNA-mediated RNA interference to probe the efficacy of these ligands compared to U-II. Knockdown of human UT occurs in the same cellular background with the same coupling machinery allowing relative efficacy to be probed. CHO cells stably expressing 1,110 fmol/mg protein of human UT (CHOhUT) were transfected with s194454, s194455 (UT-targeting), or a negative control siRNA using siPORT amine transfection reagent. After 48 h,silencing was assessed using quantitative PCR in a duplex assay format. Functional consequences of silencing were assessed by measuring [Ca2+]i in Fura-2 loaded cells using the NOVOstar plate reader. Silencing with s194455 was greater than that with s194454 (93.5±2.8% and 73.0±2.5%knockdown of UT mRNA respectively at 10-7 M, p00.006).Both s194455 and s194454 knocked down UT mRNA expression with equal potency (EC50 1.38 and 0.45 nM). The negative control did not affect UT mRNA expression. U-II(10-6M) increased [Ca2+]i 630±69, 402±49 and 190±14nM,urantide (10-6 M) increased [Ca2+]i 408±55, 191±40, and 131±10 nM and UFP-803 (10-6 M) increased [Ca2+]i 134±23, 83±11 and 53±3nM for negative control siRNA, s194454 and s194455, respectively.We have demonstrated silencing of UT mRNA and a reduction of absolute efficacy of three UT ligands. However, we were unable to resolve any changes in relative efficacy for urantide and UFP-803. This is likely to result from a high starting expression and retention of a receptor/coupling reserve.
3. Metal enriched quasi-ultrafine particles from stainless steel gas metal arc welding induced genetic and epigenetic alterations in BEAS-2B cells
D Rousset, A Leroyer, G Garçon, A Platel, S Anthérieu, F Nesslany, C Nisse, C Grare, B Lima, D Achour, E Perdrix, L Y Alleman, J Boudjema, J-M Lo Guidice NanoImpact . 2021 Jul;23:100346. doi: 10.1016/j.impact.2021.100346.
Recent evidence has supported welding fume (WF)-derived ultrafine particles (UFP) could be the driving force of their adverse health effects. However, UFP have not yet been extensively studied and are currently not included in present air quality standards/guidelines. Here, attention was focused on the underlying genetic and epigenetic mechanisms by which the quasi-UFP (Q-UFP, i.e., ≤ 0.25 μm) of the WF emitted by gas metal arc welding-stainless steel (GMAW-SS) exert their toxicity in human bronchial epithelial BEAS-2B cells. The Q-UFP under study showed a monomodal size distribution in number centered on 104.4 ± 52.3 nm and a zeta potential of -13.8 ± 0.3 mV. They were enriched in Fe > Cr > Mn > Si, and displayed a relatively high intrinsic oxidative potential. Dose-dependent activation of nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B signaling pathway, glutathione alteration, and DNA, protein and lipid oxidative damage were reported in BEAS-2B cells acutely (1.5 and 9 μg/cm2, 24 h) or repeatedly (0.25 and 1.5 μg/cm2, 3 × 24 h) exposed to Q-UFP (p < 0.05). Alterations of the Histone H3 acetylation were reported for any exposure (p < 0.05). Differentially regulated miRNA and mRNA indicated the activation of some critical cell signaling pathways related to oxidative stress, inflammation, and cell cycle deregulation towards apoptosis. Taken together, these results highlighted the urgent need to better evaluate the respective toxicity of the different metals and to include the Q-UFP fraction of WF in current air quality standards/guidelines relevant to the occupational settings.