Need Assistance?
  • US & Canada:
    +
  • UK: +

WRW4

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

WRW4 is a selective antagonist of formyl peptide receptor 2 (FPR2) signaling. WRW4 inhibits WKYMVm binding to FPR2 (IC50 = 0.23 μM) and blocks intracellular calcium release induced by WKYMVm, MMK 1, amyloid β42, and F peptide.

Category
Peptide Inhibitors
Catalog number
BAT-010720
CAS number
878557-55-2
Molecular Formula
C61H65N15O6
Molecular Weight
1104.28
WRW4
IUPAC Name
(2S)-N-[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-amino-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]-2-[[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]amino]-5-(diaminomethylideneamino)pentanamide
Synonyms
WRW4; WRW 4; WRW-4
Sequence
WRWWWW
InChI
InChI=1S/C61H65N15O6/c62-44(24-34-29-67-45-17-6-1-12-39(34)45)56(78)72-50(22-11-23-66-61(64)65)57(79)74-53(27-37-32-70-48-20-9-4-15-42(37)48)59(81)76-54(28-38-33-71-49-21-10-5-16-43(38)49)60(82)75-52(26-36-31-69-47-19-8-3-14-41(36)47)58(80)73-51(55(63)77)25-35-30-68-46-18-7-2-13-40(35)46/h1-10,12-21,29-33,44,50-54,67-71H,11,22-28,62H2,(H2,63,77)(H,72,78)(H,73,80)(H,74,79)(H,75,82)(H,76,81)(H4,64,65,66)/t44-,50-,51-,52-,53-,54-/m0/s1
InChI Key
IRJDOVLLPORVJP-WOAIKHIASA-N
Canonical SMILES
C1=CC=C2C(=C1)C(=CN2)CC(C(=O)NC(CCCN=C(N)N)C(=O)NC(CC3=CNC4=CC=CC=C43)C(=O)NC(CC5=CNC6=CC=CC=C65)C(=O)NC(CC7=CNC8=CC=CC=C87)C(=O)NC(CC9=CNC1=CC=CC=C19)C(=O)N)N
1.SAA drives proinflammatory heterotypic macrophage differentiation in the lung via CSF-1R-dependent signaling.
Anthony D;McQualter JL;Bishara M;Lim EX;Yatmaz S;Seow HJ;Hansen M;Thompson M;Hamilton JA;Irving LB;Levy BD;Vlahos R;Anderson GP;Bozinovski S FASEB J. 2014 Sep;28(9):3867-77. doi: 10.1096/fj.14-250332. Epub 2014 May 20.
Serum amyloid A (SAA) is expressed locally in chronic inflammatory conditions such as chronic obstructive pulmonary disease (COPD), where macrophages that do not accord with the classic M1/M2 paradigm also accumulate. In this study, the role of SAA in regulating macrophage differentiation was investigated in vitro using human blood monocytes from healthy subjects and patients with COPD and in vivo using an airway SAA challenge model in BALB/c mice. Differentiation of human monocytes with SAA stimulated the proinflammatory monokines IL-6 and IL-1β concurrently with the M2 markers CD163 and IL-10. Furthermore, SAA-differentiated macrophages stimulated with lipopolysaccharide (LPS) expressed markedly higher levels of IL-6 and IL-1β. The ALX/FPR2 antagonist WRW4 reduced IL-6 and IL-1β expression but did not significantly inhibit phagocytic and efferocytic activity. In vivo, SAA administration induced the development of a CD11c(high)CD11b(high) macrophage population that generated higher levels of IL-6, IL-1β, and G-CSF following ex vivo LPS challenge. Blocking CSF-1R signaling effectively reduced the number of CD11c(high)CD11b(high) macrophages by 71% and also markedly inhibited neutrophilic inflammation by 80%.
2.VIP differentially activates beta2 integrins, CR1, and matrix metalloproteinase-9 in human monocytes through cAMP/PKA, EPAC, and PI-3K signaling pathways via VIP receptor type 1 and FPRL1.
El Zein N;Badran B;Sariban E J Leukoc Biol. 2008 Apr;83(4):972-81. doi: 10.1189/jlb.0507327. Epub 2008 Jan 16.
The neuropeptide vasoactive intestinal peptide (VIP) regulates the exocytosis of secretory granules in a wide variety of cells of neuronal and non-neuronal origin. In human monocytes, we show that the proinflammatory effects of VIP are associated with stimulation of exocytosis of secretory vesicles as well as tertiary (gelatinase) granules with, respectively, up-regulation of the membrane expression of the beta2 integrin CD11b, the complement receptor 1 (CD35), and the matrix metalloproteinase-9 (MMP-9). Using the low-affinity formyl peptide receptor-like 1 (FPRL1) antagonist Trp-Arg-Trp-Trp-Trp-Trp (WRW4) and the exchange protein directly activated by cAMP (EPAC)-specific compound 8CPT-2Me-cAMP and measuring the expression of Rap1 GTPase-activating protein as an indicator of EPAC activation, we found that the proinflammatory effect of VIP is mediated via the specific G protein-coupled receptor VIP/pituitary adenylate cyclase-activating protein (VPAC1) receptor as well as via FPRL1: VIP/VPAC1 interaction is associated with a cAMP increase and activation of a cAMP/p38 MAPK pathway, which regulates MMP-9, CD35, and CD11b exocytosis, and a cAMP/EPAC/PI-3K/ERK pathway, which regulates CD11b expression; VIP/FPRL1 interaction results in cAMP-independent PI-3K/ERK activation with downstream integrin up-regulation.
3.Pro-Resolving Effects of Resolvin D2 in LTD4 and TNF-α Pre-Treated Human Bronchi.
Khaddaj-Mallat R;Sirois C;Sirois M;Rizcallah E;Marouan S;Morin C;Rousseau É PLoS One. 2016 Dec 9;11(12):e0167058. doi: 10.1371/journal.pone.0167058. eCollection 2016.
Inflammation is a major burden in respiratory diseases, resulting in airway hyperresponsiveness. Our hypothesis is that resolution of inflammation may represent a long-term solution in preventing human bronchial dysfunctions. The aim of the present study was to assess the anti-inflammatory effects of RvD2, a member of the D-series resolving family, with concomitant effects on ASM mechanical reactivity. The role and mode of action of RvD2 were assessed in an in vitro model of human bronchi under pro-inflammatory conditions, induced either by 1 μM LTD4 or 10 ng/ml TNF-α pre-treatment for 48h. TNF-α and LTD4 both induced hyperreactivity in response to pharmacological stimuli. Enhanced 5-Lipoxygenase (5-LOX) and cysteinyl leukotriene receptor 1 (CysLTR1) detection was documented in LTD4 or TNF-α pre-treated human bronchi when compared to control (untreated) human bronchi. In contrast, RvD2 treatments reversed 5-LOX/β-actin and CysLTR1/β-actin ratios and decreased the phosphorylation levels of AP-1 subunits (c-Fos, c-Jun) and p38-MAP kinase, while increasing the detection of the ALX/FPR2 receptor. Moreover, various pharmacological agents revealed the blunting effects of RvD2 on LTD4 or TNF-α induced hyper-responsiveness.
Online Inquiry
Verification code
Inquiry Basket