Z-ASTD-FMK
Need Assistance?
  • US & Canada:
    +
  • UK: +

Z-ASTD-FMK

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Z-ASTD-FMK is a cell-permeant and irreversible inhibitor of endothelial monocyte-activated polypeptide II (EMAP II).

Category
Peptide Inhibitors
Catalog number
BAT-010394
Molecular Formula
C24H33FN4O10
Molecular Weight
556.54
Z-ASTD-FMK
IUPAC Name
methyl (3S)-5-fluoro-3-[[(2S,3R)-3-hydroxy-2-[[(2S)-3-hydroxy-2-[[(2S)-2-(phenylmethoxycarbonylamino)propanoyl]amino]propanoyl]amino]butanoyl]amino]-4-oxopentanoate
Synonyms
EMAP II inhibitor; Z-Ala-Ser-Thr-Asp(OMe)-Fluoromethylketone; Z-ASTD(OMe)-fmk; Cbz-Ala-Ser-Thr-Asp(OMe)-CH2F
Appearance
Solid
Purity
≥95%
Density
1.4±0.1 g/cm3
Boiling Point
735.4±70.0°C at 760 mmHg
Sequence
Z-Ala-Ser-Thr-Asp(OMe)-FMK
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C24H33FN4O10/c1-13(26-24(37)39-12-15-7-5-4-6-8-15)21(34)28-17(11-30)22(35)29-20(14(2)31)23(36)27-16(18(32)10-25)9-19(33)38-3/h4-8,13-14,16-17,20,30-31H,9-12H2,1-3H3,(H,26,37)(H,27,36)(H,28,34)(H,29,35)/t13-,14+,16-,17-,20-/m0/s1
InChI Key
LICIOVKJUZZCAM-ACSCVQKFSA-N
Canonical SMILES
CC(C(C(=O)NC(CC(=O)OC)C(=O)CF)NC(=O)C(CO)NC(=O)C(C)NC(=O)OCC1=CC=CC=C1)O
1. A programmed cell death pathway in the malaria parasite Plasmodium falciparum has general features of mammalian apoptosis but is mediated by clan CA cysteine proteases
S R Kotturi, K S-W Tan, J-H Ch'ng, A G-L Chong, M J Lear Cell Death Dis . 2010;1(2):e26. doi: 10.1038/cddis.2010.2.
Several recent discoveries of the hallmark features of programmed cell death (PCD) in Plasmodium falciparum have presented the possibility of revealing novel targets for antimalarial therapy. Using a combination of cell-based assays, flow cytometry and fluorescence microscopy, we detected features including mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in parasites induced with chloroquine (CQ) and staurosporine (ST). The use of the pan-caspase inhibitor, z-Val-Ala-Asp-fmk (zVAD), and the mitochondria outer membrane permeabilization (MOMP) inhibitor, 4-hydroxy-tamoxifen, enabled the characterization of a novel CQ-induced pathway linking cysteine protease activation to downstream mitochondrial dysregulation, amplified protease activity and DNA fragmentation. The PCD features were observed only at high (μM) concentrations of CQ. The use of a new synthetic coumarin-labeled chloroquine (CM-CQ) showed that these features may be associated with concentration-dependent differences in drug localization. By further using cysteine protease inhibitors z-Asp-Glu-Val-Asp-fmk (zDEVD), z-Phe-Ala-fmk (zFA), z-Phe-Phe-fmk (zFF), z-Leu-Leu-Leu-fmk (zLLL), E64d and CA-074, we were able to implicate clan CA cysteine proteases in CQ-mediated PCD. Finally, CQ induction of two CQ-resistant parasite strains, 7G8 and K1, reveals the existence of PCD features in these parasites, the extent of which was less than 3D7. The use of the chemoreversal agent verapamil implicates the parasite digestive vacuole in mediating CQ-induced PCD.
2. Antimycin A-induced killing of HL-60 cells: apoptosis initiated from within mitochondria does not necessarily proceed via caspase 9
Malcolm Anthony King Cytometry A . 2005 Feb;63(2):69-76. doi: 10.1002/cyto.a.20107.
Background:Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested.Methods:Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy.Results:AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell.Conclusions:The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.
3. Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma
Ling Qi, Lisha Li, Xiaodong Ling, Chengxin Song, Mingxia Jiang, Yanjing Li, Yiming Wu, Dongfeng Song, Junqing Gan Chem Biol Interact . 2021 Dec 1;350:109704. doi: 10.1016/j.cbi.2021.109704.
Pyroptosis is a novel type of pro-inflammatory programmed cell death that has been strongly reported to be related to inflammation, immune, and cancer. Dihydroartemisinin (DHA) has good anti-tumor properties. However, the exact mechanism by which DHA induces pyroptosis to inhibit esophageal squamous cell carcinoma (ESCC) remains unclear. After applying DHA treatment to ESCC, we found that some dying cells exhibited the characteristic morphology of pyroptosis, such as blowing large bubbles from the cell membrane, accompanied by downregulation of pyruvate kinase isoform M2 (PKM2), activation of caspase-8/3, and production of GSDME-NT. Meanwhile, it was accompanied by an increased release of LDH and inflammatory factors (IL-18 and IL-1β). Both knockdown of GSDME and application of caspase-8/3 specific inhibitors (z-ITED-FMK/Ac-DEVD-CHO) significantly inhibited DHA-induced pyroptosis. However, the former did not affect the activation of caspase-3. In contrast, overexpression of PKM2 inhibited caspase-8/3 activation as well as GSDME-N production. Furthermore, both si-GSDME and OE-PKM2 inhibited DHA-induced pyroptosis in vivo and in vitro. Therefore, the results suggest that DHA can induce pyroptosis of ESCC cells via the PKM2-caspase-8/3-GSDME pathway. Implication: In this study, we identified new mechanism of DHA in inhibiting ESCC development and progression, and provide a potential therapeutic agent for the treatment of ESCC.
Online Inquiry
Verification code
Inquiry Basket