Z-Gly-Sar-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Z-Gly-Sar-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-006578
CAS number
7801-91-4
Molecular Formula
C13H16N2O5
Molecular Weight
280.28
Z-Gly-Sar-OH
IUPAC Name
2-[methyl-[2-(phenylmethoxycarbonylamino)acetyl]amino]acetic acid
Synonyms
N-(((benzyloxy)carbonyl)glycyl)-N-methylglycine; 2-(2-(benzyloxycarbonylamino)-N-methylacetamido)acetic acid; 2-[methyl-(2-phenylmethoxycarbonylaminoacetyl)amino]acetic acid; Z Gly Sar OH
Appearance
White to off-white powder
Purity
≥ 99% (HPLC)
Density
1.297g/cm3
Boiling Point
522.5°C at 760 mmHg
Storage
Store at 2-8 °C
InChI
InChI=1S/C13H16N2O5/c1-15(8-12(17)18)11(16)7-14-13(19)20-9-10-5-3-2-4-6-10/h2-6H,7-9H2,1H3,(H,14,19)(H,17,18)
InChI Key
DNSQLCGFBZSRPW-UHFFFAOYSA-N
Canonical SMILES
CN(CC(=O)O)C(=O)CNC(=O)OCC1=CC=CC=C1
1. New alloferon analogues: synthesis and antiviral properties
Mariola Kuczer, Anna Majewska, Renata Zahorska Chem Biol Drug Des. 2013 Feb;81(2):302-9. doi: 10.1111/cbdd.12020. Epub 2012 Nov 19.
We have extended our study on structure/activity relationship studies of insect peptide alloferon (H-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly-OH) by evaluating the antiviral effects of new alloferon analogues. We synthesized 18 alloferon analogues: 12 peptides with sequences shortened from N- or C-terminus and 6 N-terminally modified analogues H-X(1)-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly-OH, where X(1) = Phe (13), Tyr (14), Trp (15), Phg (16), Phe(p-Cl) (17), and Phe(p-OMe) (18). We found that most of the evaluated peptides inhibit the replication of Human Herpesviruses or Coxsackievirus B2 in Vero, HEp-2 and LLC-MK(2) cells. Our results indicate that the compound [3-13]-alloferon (1) exhibits the strongest antiviral activity (IC(50) = 38 μM) among the analyzed compound. Moreover, no cytotoxic activity against the investigated cell lines was observed for all studied peptides at concentration 165 μM or higher.
2. Affinity and translocation relationships via hPEPT1 of H-X aa-Ser-OH dipeptides: evaluation of H-Phe-Ser-OH as a pro-moiety for ibuprofen and benzoic acid prodrugs
Diana Højmark Omkvist, Dennis Jespersen Trangbæk, Jemma Mildon, James S Paine, Birger Brodin, Mikael Begtrup, Carsten Uhd Nielsen Eur J Pharm Biopharm. 2011 Feb;77(2):327-31. doi: 10.1016/j.ejpb.2010.12.009. Epub 2010 Dec 13.
The intestinal di/tri-peptide transporter 1 (hPEPT1) has been suggested as a drug delivery target for peptide-based prodrugs. The aim of the study was to synthesize a series of 11 serine-containing dipeptides (H-X(aa)-Ser-OH) and to investigate the relationship between binding to and transport via hPEPT1. An additional aim was to design a dipeptide which could serve as a pro-moiety for prodrugs targeted to hPEPT1. X(aa) was chosen from the 20 proteogenic amino acids. The dipeptides were synthesized using solid phase peptide synthesis. The K(i)-values of H-X(aa)-Ser-OH dipeptides for hPEPT1 in MDCK/hPEPT1 cells ranged from 0.14 mM (logIC(50)=-0.85 ± 0.06) for H-Tyr-Ser-OH to 0.89 mM (logIC(50)=-0.09 ± 0.02) for H-Gly-Ser-OH, as measured in a competition assay with [(14)C]Gly-Sar. The dipeptides were translocated via hPEPT1 with K(m)-values in the range of 0.20 (logIC(50)=-0.69 ± 0.04) for H-Met-Ser-OH to 1.04 (logIC(50)=0.02 ± 0.04) mM for H-Gly-Ser-OH. The relationship between ligand and transportate properties indicated that the initial binding of the ligand to hPEPT1 is the major determinant for translocation of the investigated dipeptides. H-Phe-Ser-OH was selected as a pro-moiety, and two prodrugs were synthesized, i.e. H-Phe-Ser(Ibuprofyl)-OH and H-Phe-Ser(Bz)-OH. Both H-Phe-Ser(Ibuprofyl)-OH and H-Phe-Ser(Bz)-OH had high affinity for hPEPT1 with K(i)-values of 0.07 mM (logIC(50)=-0.92 ± 0.12) and 0.12 mM (logIC(50)=-1.17 ± 0.40), respectively. However, none of the prodrugs were translocated via hPEPT1. This indicated that the coupling of the drug compounds to the peptide backbone did not decrease transporter binding, but abolished translocation, and that high affinity of prodrugs does not necessarily translate into favourable permeation properties.
3. Molecularly imprinted nanoparticles with recognition properties towards a laminin H-Tyr-Ile-Gly-Ser-Arg-OH sequence for tissue engineering applications
Elisabetta Rosellini, Niccoletta Barbani, Paolo Giusti, Gianluca Ciardelli, Caterina Cristallini Biomed Mater. 2010 Dec;5(6):065007. doi: 10.1088/1748-6041/5/6/065007. Epub 2010 Oct 22.
Nanotechnology is an emerging field that promises to revolutionize medicine and is increasingly used in tissue engineering applications. Our research group proposed for the first time molecular imprinting as a new nanotechnology for the creation of advanced synthetic support structures for cell adhesion and proliferation. The aim of this work was the synthesis and characterization of molecularly imprinted polymers with recognition properties towards a laminin peptide sequence and their application as functionalization structures in the development of bioactive materials. Nanoparticles with an average diameter of 200 nm were synthesized by precipitation polymerization of methacrylic acid in the presence of the template molecule and trimethylpropane trimethacrylate as the cross-linking agent. The imprinted nanoparticles showed good performance in terms of recognition capacity and selectivity. The cytotoxicity tests showed normal vitality of C2C12 myoblasts cultured in the medium that was put in contact with the imprinted polymers. After the deposition on the polymeric film surface, the imprinted particles maintained their specific recognition and rebinding behaviour, showing an even higher quantitative binding than free nanoparticles. Preliminary in vitro cell culture tests demonstrated the ability of functionalized materials to promote cell adhesion, proliferation and differentiation, suggesting that molecular imprinting can be used as an innovative functionalization technique.
Online Inquiry
Verification code
Inquiry Basket