Z-L-pyroglutamic acid N-hydroxysuccinimide ester
Need Assistance?
  • US & Canada:
    +
  • UK: +

Z-L-pyroglutamic acid N-hydroxysuccinimide ester

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
CBZ-Amino Acids
Catalog number
BAT-005779
CAS number
40291-26-7
Molecular Formula
C17H16N2O7
Molecular Weight
360.33
Z-L-pyroglutamic acid N-hydroxysuccinimide ester
IUPAC Name
1-O-benzyl 2-O-(2,5-dioxopyrrolidin-1-yl) (2S)-5-oxopyrrolidine-1,2-dicarboxylate
Synonyms
Z-L-Pyr-OSu
Appearance
White to off-white powder
Purity
≥ 99.5% (Chiral HPLC)
Melting Point
130-140 °C
Storage
Store at 2-8°C
InChI
InChI=1S/C17H16N2O7/c20-13-7-6-12(16(23)26-19-14(21)8-9-15(19)22)18(13)17(24)25-10-11-4-2-1-3-5-11/h1-5,12H,6-10H2/t12-/m0/s1
InChI Key
LZNYDJDSWANAND-LBPRGKRZSA-N
Canonical SMILES
C1CC(=O)N(C1C(=O)ON2C(=O)CCC2=O)C(=O)OCC3=CC=CC=C3
1. A rapid and robust method for amino acid quantification using a simple N-hydroxysuccinimide ester derivatization and liquid chromatography-ion mobility-mass spectrometry
Taylor M Domenick, Austin L Jones, Robin H J Kemperman, Richard A Yost Anal Bioanal Chem. 2022 Jul;414(18):5549-5559. doi: 10.1007/s00216-022-03993-w. Epub 2022 Mar 26.
The vast majority of mass spectrometry (MS)-based metabolomics studies employ reversed-phase liquid chromatography (RPLC) to separate analytes prior to MS detection. Highly polar metabolites, such as amino acids (AAs), are poorly retained by RPLC, making quantitation of these key species challenging across the broad concentration ranges typically observed in biological specimens, such as cell extracts. To improve the detection and quantitation of AAs in microglial cell extracts, the implementation of a 4-dimethylaminobenzoylamido acetic acid N-hydroxysuccinimide ester (DBAA-NHS) derivatization agent was explored for its ability to improve both analyte retention and detection limits in RPLC-MS. In addition to the introduction of the DBAA-NHS labeling reagent, a uniformly (U) 13C-labeled yeast extract was also introduced during the sample preparation workflow as an internal standard (IS) to eliminate artifacts and to enable targeted quantitation of AAs, as well as untargeted amine submetabolome profiling. To improve method sensitivity and selectivity, multiplexed drift-tube ion mobility (IM) was integrated into the LC-MS workflow, facilitating the separation of isomeric metabolites, and improving the structural identification of unknown metabolites. Implementation of the U-13C-labeled yeast extract during the multiplexed LC-IM-MS analysis enabled the quantitation of 19 of the 20 common AAs, supporting a linear dynamic range spanning up to three orders of magnitude in concentration for microglial cell extracts, in addition to reducing the required cell count for reliable quantitation from 10 to 5 million cells per sample.
2. Selective protein N-terminal labeling with N-hydroxysuccinimide esters
Hanjie Jiang, Gabriel D D'Agostino, Philip A Cole, Daniel R Dempsey Methods Enzymol. 2020;639:333-353. doi: 10.1016/bs.mie.2020.04.018. Epub 2020 Apr 28.
In order to gain detailed insight into the biochemical behavior of proteins, researchers have developed chemical tools to incorporate new functionality into proteins beyond the canonical 20 amino acids. Important considerations regarding effective chemical modification of proteins include chemoselectivity, near stoichiometric labeling, and reaction conditions that maintain protein stability. Taking these factors into account, we discuss an N-terminal labeling strategy that employs a simple two-step "one-pot" method using N-hydroxysuccinimide (NHS) esters. The first step converts a R-NHS ester into a more chemoselective R-thioester. The second step reacts the in situ generated R-thioester with a protein that harbors an N-terminal cysteine to generate a new amide bond. This labeling reaction is selective for the N-terminus with high stoichiometry. Herein, we provide a detailed description of this method and further highlight its utility with a large protein (>100kDa) and labeling with a commonly used cyanine dye.
3. Improved detection of β-N-methylamino-L-alanine using N-hydroxysuccinimide ester of N-butylnicotinic acid for the localization of BMAA in blue mussels (Mytilus edulis)
Rudolf Andrýs, Javier Zurita, Nadezda Zguna, Klaas Verschueren, Wim M De Borggraeve, Leopold L Ilag Anal Bioanal Chem. 2015 May;407(13):3743-50. doi: 10.1007/s00216-015-8597-2. Epub 2015 Mar 28.
β-N-Methylamino-L-alanine (BMAA) is an important non-protein amino acid linked to neurodegenerative diseases, specifically amyotrophic lateral sclerosis (ALS). Because it can be transferred and bioaccumulated higher up the food chain, it poses significant public health concerns; thus, improved detection methods are of prime importance for the identification and management of these toxins. Here, we report the successful use of N-hydroxysuccinimide ester of N-butylnicotinic acid (C4-NA-NHS) for the efficient separation of BMAA from its isomers and higher sensitivity in detecting BMAA compared to the current method of choice using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization. Implementation of this efficient method allowed localization of BMAA in the non-visceral tissues of blue mussels, suggesting that more efficient depuration may be required to remove this toxin prior to consumption. This is a crucial method in establishing the absence or presence of the neurotoxic amino acid BMAA in food, environmental or biomedical samples.
Online Inquiry
Verification code
Inquiry Basket