1. Reactions of O-acyl-L-serines with tryptophanase, tyrosine phenol-lyase, and tryptophan synthase
R S Phillips Arch Biochem Biophys. 1987 Jul;256(1):302-10. doi: 10.1016/0003-9861(87)90450-4.
The reactions of tryptophanase, tyrosine phenol-lyase, and tryptophan synthase with a new class of substrates, the O-acyl-L-serines, have been examined. A method for preparation of O-benzoyl-L-serine in high yield from tert.-butyloxycarbonyl (tBoc)-L-serine has been developed. Reaction of the cesium salt of tBoc-L-serine with benzyl bromide in dimethylformamide gives tBoc-L-serine benzyl ester in excellent yield. Acylation with benzoyl chloride and triethylamine in acetonitrile followed by hydrogenolysis with 10% palladium on carbon in trifluoroacetic acid gives O-benzoyl-L-serine, isolated as the hydrochloride salt. O-Benzoyl-L-serine is a good substrate for beta-elimination or beta-substitution reactions catalyzed by both tryptophanase and tyrosine phenol-lyase, with Vmax values 5- to 6-fold those of the physiological substrates and comparable to that of S-(o-nitrophenyl)-L-cysteine. Unexpectedly, O-acetyl-L-serine is a very poor substrate for these enzymes, with Vmax values about 5% of those of the physiological substrates. Both O-acyl-L-serines are poor substrates for tryptophan synthase, measured either by the synthesis of 5-fluoro-L-tryptophan from 5-fluoroindole and L-serine catalyzed by the intact alpha 2 beta 2 subunit or by the beta-elimination reaction catalyzed by the isolated beta 2 subunit. With all three enzymes, the elimination of benzoate appears to be irreversible. These results suggest that the binding energy from the aromatic ring of O-benzoyl-L-serine is used to lower the transition-state barrier for the elimination reactions catalyzed by tryptophanase and tyrosine phenol-lyase. Our findings support the suggestion (M. N. Kazarinoff and E. E. Snell (1980) J. Biol. Chem. 255, 6228-6233) that tryptophanase undergoes a conformational change during catalysis and suggest that tyrosine phenol-lyase also may undergo a conformational change during catalysis.
2. 'Reverse biomimetic' synthesis of l-arogenate and its stabilized analogues from l-tyrosine
Louise Eagling, Daniel J Leonard, Maria Schwarz, Iñaki Urruzuno, Grace Boden, J Steven Wailes, John W Ward, Jonathan Clayden Chem Sci. 2021 Jul 30;12(34):11394-11398. doi: 10.1039/d1sc03554a. eCollection 2021 Sep 1.
l-Arogenate (also known as l-pretyrosine) is a primary metabolite on a branch of the shikimate biosynthetic pathway to aromatic amino acids. It plays a key role in the synthesis of plant secondary metabolites including alkaloids and the phenylpropanoids that are the key to carbon fixation. Yet understanding the control of arogenate metabolism has been hampered by its extreme instability and the lack of a versatile synthetic route to arogenate and its analogues. We now report a practical synthesis of l-arogenate in seven steps from O-benzyl l-tyrosine methyl ester in an overall yield of 20%. The synthetic route also delivers the fungal metabolite spiroarogenate, as well as a range of stable saturated and substituted analogues of arogenate. The key step in the synthesis is a carboxylative dearomatization by intramolecular electrophilic capture of tyrosine's phenolic ring using an N-chloroformylimidazolidinone moiety, generating a versatile, functionalizable spirodienone intermediate.
3. Crystal structure of O-benzyl-l-tyrosine N-carb-oxy anhydride
Aya Inada, Hitoshi Kanazawa Acta Crystallogr E Crystallogr Commun. 2017 Mar 21;73(Pt 4):553-555. doi: 10.1107/S2056989017004236. eCollection 2017 Apr 1.
In the title compound, C17H15NO4 (alternative name; O-benzyl-l-tyrosine N-carb-oxy anhydride), the oxazolidine ring is planer, with an r.m.s. deviation of 0.039 Å. The benz-yloxy and benzyl rings are almost coplanar, making a dihedral angle of 0.078 (10)°, and are inclined to the oxazolidine ring by 59.16 (11) and 58.42 (11)°, respectively. In the crystal, mol-ecules are linked by N-H⋯O and C-H⋯O hydrogen bonds, forming ribbons propagating along [010]. The ribbons are linked by C-H⋯π inter-actions, forming a three-dimensional supra-molecular structure. The oxazolidine rings of adjacent ribbons are arranged into a layer parallel to the ab plane. This arrangement is favourable for the polymerization of the compound in the solid state.