Z-Phe-Phe-Phe-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Z-Phe-Phe-Phe-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-004892
CAS number
57092-52-1
Molecular Formula
C35H35N3O6
Molecular Weight
593.68
Z-Phe-Phe-Phe-OH
IUPAC Name
(2S)-3-phenyl-2-[[(2S)-3-phenyl-2-[[(2S)-3-phenyl-2-(phenylmethoxycarbonylamino)propanoyl]amino]propanoyl]amino]propanoic acid
Synonyms
(5S,8S,11S)-5,8,11-Tribenzyl-3,6,9-Trioxo-1-Phenyl-2-Oxa-4,7,10-Triazadodecan-12-Oic Acid
Storage
Store at -20°C
InChI
InChI=1S/C35H35N3O6/c39-32(37-31(34(41)42)23-27-17-9-3-10-18-27)29(21-25-13-5-1-6-14-25)36-33(40)30(22-26-15-7-2-8-16-26)38-35(43)44-24-28-19-11-4-12-20-28/h1-20,29-31H,21-24H2,(H,36,40)(H,37,39)(H,38,43)(H,41,42)/t29-,30-,31-/m0/s1
InChI Key
BQDHGVWUXAXFMT-CHQNGUEUSA-N
Canonical SMILES
C1=CC=C(C=C1)CC(C(=O)NC(CC2=CC=CC=C2)C(=O)O)NC(=O)C(CC3=CC=CC=C3)NC(=O)OCC4=CC=CC=C4
1. The trans-ancestral genomic architecture of glycemic traits
Hugoline G de Haan, et al. Nat Genet. 2021 Jun;53(6):840-860. doi: 10.1038/s41588-021-00852-9. Epub 2021 May 31.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
2. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
Sina Rüeger, Pietro Della Briotta Parolo, Yoonjung Yoonie Joo, M Geoffrey Hayes Nat Genet. 2022 May;54(5):560-572. doi: 10.1038/s41588-022-01058-3. Epub 2022 May 12.
We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 × 10-9), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.
3. A saturated map of common genetic variants associated with human height
Gabriel Cuellar Partida, Yan Sun, Damien Croteau-Chonka, Judith M Vonk, Stephen Chanock, Loic Le Marchand Nature. 2022 Oct;610(7933):704-712. doi: 10.1038/s41586-022-05275-y. Epub 2022 Oct 12.
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
Online Inquiry
Verification code
Inquiry Basket