ZIP (Scrambled)
Need Assistance?
  • US & Canada:
    +
  • UK: +

ZIP (Scrambled)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

ZIP (Scrambled) is a scrambled control peptide for ZIP.

Category
Peptide Inhibitors
Catalog number
BAT-010346
CAS number
908012-18-0
Molecular Formula
C90H154N30O17
Molecular Weight
1928.38
ZIP (Scrambled)
IUPAC Name
(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-5-carbamimidamido-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-carbamimidamido-2-(tetradecanoylamino)pentanoyl]amino]-4-methylpentanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]pentanoyl]amino]hexanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxypropanoyl]amino]propanoyl]amino]acetyl]amino]-5-carbamimidamidopentanoic acid
Synonyms
z-Pseudosubstrate inhibitory peptide (scrambled); myristoyl-Arg-Leu-Tyr-Arg-Lys-Arg-Ile-Trp-Arg-Ser-Ala-Gly-Arg-OH; N-myristoyl-L-arginyl-L-leucyl-L-tyrosyl-L-arginyl-L-lysyl-L-arginyl-L-isoleucyl-L-tryptophyl-L-arginyl-L-seryl-L-alanyl-glycyl-L-arginine
Appearance
White Lyophilized Solid
Purity
>98%
Density
1.4±0.1 g/cm3
Sequence
RLYRKRIWRSAGR (Modifications: Arg-1 = Myr-Arg)
Storage
Store at -20°C
Solubility
Soluble in DMSO, Water
InChI
InChI=1S/C90H154N30O17/c1-7-9-10-11-12-13-14-15-16-17-18-36-71(123)110-61(31-23-42-102-86(92)93)75(126)116-67(47-53(3)4)80(131)117-68(48-56-37-39-58(122)40-38-56)81(132)114-63(32-24-43-103-87(94)95)77(128)112-62(30-21-22-41-91)76(127)113-65(34-26-45-105-89(98)99)79(130)120-73(54(5)8-2)84(135)118-69(49-57-50-107-60-29-20-19-28-59(57)60)82(133)115-64(33-25-44-104-88(96)97)78(129)119-70(52-121)83(134)109-55(6)74(125)108-51-72(124)111-66(85(136)137)35-27-46-106-90(100)101/h19-20,28-29,37-40,50,53-55,61-70,73,107,121-122H,7-18,21-27,30-36,41-49,51-52,91H2,1-6H3,(H,108,125)(H,109,134)(H,110,123)(H,111,124)(H,112,128)(H,113,127)(H,114,132)(H,115,133)(H,116,126)(H,117,131)(H,118,135)(H,119,129)(H,120,130)(H,136,137)(H4,92,93,102)(H4,94,95,103)(H4,96,97,104)(H4,98,99,105)(H4,100,101,106)/t54-,55-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,73-/m0/s1
InChI Key
RGEXADZIYANTGH-HOHDCHNJSA-N
Canonical SMILES
CCCCCCCCCCCCCC(=O)NC(CCCNC(=N)N)C(=O)NC(CC(C)C)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CCCNC(=N)N)C(=O)NC(C(C)CC)C(=O)NC(CC2=CNC3=CC=CC=C32)C(=O)NC(CCCNC(=N)N)C(=O)NC(CO)C(=O)NC(C)C(=O)NCC(=O)NC(CCCNC(=N)N)C(=O)O
1. The role of PKMζ in the maintenance of long-term memory: a review
Reza Zamani, Hamish Patel Rev Neurosci . 2021 Feb 8;32(5):481-494. doi: 10.1515/revneuro-2020-0105.
Long-term memories are thought to be stored in neurones and synapses that undergo physical changes, such as long-term potentiation (LTP), and these changes can be maintained for long periods of time. A candidate enzyme for the maintenance of LTP is protein kinase M zeta (PKMζ), a constitutively active protein kinase C isoform that is elevated during LTP and long-term memory maintenance. This paper reviews the evidence and controversies surrounding the role of PKMζ in the maintenance of long-term memory. PKMζ maintains synaptic potentiation by preventing AMPA receptor endocytosis and promoting stabilisation of dendritic spine growth. Inhibition of PKMζ, with zeta-inhibitory peptide (ZIP), can reverse LTP and impair established long-term memories. However, a deficit of memory retrieval cannot be ruled out. Furthermore, ZIP, and in high enough doses the control peptide scrambled ZIP, was recently shown to be neurotoxic, which may explain some of the effects of ZIP on memory impairment. PKMζ knockout mice show normal learning and memory. However, this is likely due to compensation by protein-kinase C iota/lambda (PKCι/λ), which is normally responsible for induction of LTP. It is not clear how, or if, this compensatory mechanism is activated under normal conditions. Future research should utilise inducible PKMζ knockdown in adult rodents to investigate whether PKMζ maintains memory in specific parts of the brain, or if it represents a global memory maintenance molecule. These insights may inform future therapeutic targets for disorders of memory loss.
2. Coxsackievirus B3 targets TFEB to disrupt lysosomal function
Yasir Mohamud, Yuan Chao Xue, Chen Seng Ng, Honglin Luo, Hui Tang, Amirhossein Bahreyni, Huitao Liu Autophagy . 2021 Dec;17(12):3924-3938. doi: 10.1080/15548627.2021.1896925.
Coxsackievirus B3 (CVB3) is a prevalent etiological agent for viral myocarditis and neurological disorders, particularly in infants and young children. Virus-encoded proteinases have emerged as cytopathic factors that contribute to disease pathogenesis in part through targeting the cellular recycling machinery of autophagy. Although it is appreciated that CVB3 can usurp cellular macroautophagy/autophagy for pro-viral functions, the precise mechanisms by which viral proteinases disrupt autophagy remain incompletely understood. Here we identified TFEB (transcription factor EB), a master regulator of autophagy and lysosome biogenesis, as a novel target of CVB3 proteinase 3 C. Time-course infections uncovered a significant loss of full-length TFEB and the emergence of a lower-molecular mass (~63 kDa) fragment. Cellular andin vitrocleavage assays revealed the involvement of viral proteinase 3 C in the proteolytic processing of TFEB, while site-directed mutagenesis identified the site of cleavage after glutamine 60. Assessment of TFEB transcriptional activity using a reporter construct discovered a loss of function of the cleavage fragment despite nuclear localization and retaining of the ability of DNA and protein binding. Furthermore, we showed that CVB3 infection was also able to trigger cleavage-independent nuclear translocation of TFEB that relied on the serine-threonine phosphatase PPP3/calcineurin. Finally, we demonstrated that both TFEB and TFEB [Δ60] serve roles in viral egress albeit through differing mechanisms. Collectively, this study reveals that CVB3 targets TFEB for proteolytic processing to disrupt host lysosomal function and enhance viral infection.Abbreviations:ACTB: actin beta; CLEAR: coordinated lysosomal enhancement and regulation; CVB3: coxsackievirus B3; DAPI: 4',6-diamidino-2-phenylindole; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LTR: LysoTracker Red; PPP3/calcineurin: protein phosphatase 3; PPP3CA: protein phosphatase 3 catalytic subunit A; p-TFEB: phospho-Ser211 TFEB; si-CON: scramble control siRNA; TFEB: transcription factor EB; TFEB [Δ60]: TFEB cleavage fragment that lacks the first 60 amino acids; VP1: viral capsid protein 1.
3. Zeta Inhibitory Peptide, a Candidate Inhibitor of Protein Kinase Mζ, Is Excitotoxic to Cultured Hippocampal Neurons
Menahem Segal, Yadin Dudai, Noa Sadeh, Sima Verbitsky J Neurosci . 2015 Sep 9;35(36):12404-11. doi: 10.1523/JNEUROSCI.0976-15.2015.
The ζ-inhibitory peptide (ZIP) is considered a candidate inhibitor of the atypical protein kinase Mζ (PKMζ). ZIP has been shown to reverse established LTP and disrupt several forms of long-term memory. However, recent studies have challenged the specificity of ZIP, as it was reported to exert its effect also in PKMζ knock-out mice. These results raise the question of what are the targets of ZIP that may underlie its effect on LTP and memory. Here we report that ZIP as well as its inactive analog, scrambled ZIP, induced a dose-dependent increase in spontaneous activity of neurons in dissociated cultures of rat hippocampus. This was followed by a sustained elevation of intracellular calcium concentration ([Ca(2+)]i) which could not be blocked by conventional channel blockers. Furthermore, ZIP caused an increase in frequency of mEPSCs followed by an increase in membrane noise in patch-clamped neurons both in culture and in acute brain slices. Finally, at 5-10 μM, ZIP-induced excitotoxic death of the cultured neurons. Together, our results suggest that the potential contribution of cellular toxicity should be taken into account in interpretation of ZIP's effects on neuronal and behavioral plasticity. Significance statement: The ζ-inhibitory peptide (ZIP) is considered a candidate inhibitor of the atypical protein kinase Mζ (PKMζ). ZIP has been shown to reverse established LTP and disrupt several forms of long-term memory. Here we report that ZIP as well as its inactive analog, scrambled ZIP, induced a dose-dependent increase in spontaneous activity of neurons in dissociated cultures and brain slices of rat hippocampus. Furthermore, ZIP caused a dose- and time-dependent neuronal death in the dissociated cultures. These findings impact on the assumption that ZIP erases memory due to specific inhibition of PKMz.
Online Inquiry
Verification code
Inquiry Basket