Fmoc-D-Asp(OtBu)-Alko-PEG Resin
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-D-Asp(OtBu)-Alko-PEG Resin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Wang resins are the standard supports for the preparation of peptide acids by the Fmoc batch solid phase synthesis strategy. Fmoc amino acids are pre-loaded to Wang resins so that that epimerization and dipeptide formation are minimized.

Category
Amino acids attached to Wang Resin
Catalog number
BAT-001116
Synonyms
Fmoc-D-Asp(OtBu)-Wang-PEG Resin; N-α-(9-Fluorenylmethoxycarbonyl)-D-aspartic acid β-t-butyl ester p-methoxybenzyl alcohol polyethyleneglycol resin
DVB Crosslinking
1% DVB
Substitution
1.0-1.4 meq/g
Storage
Store at 2-8 °C
1. A 'conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile--the pharmacological importance of post-translational modifications
Zachary L Bergeron, et al. Peptides. 2013 Nov;49:145-58. doi: 10.1016/j.peptides.2013.09.004. Epub 2013 Sep 18.
Cone snail venoms provide a largely untapped source of novel peptide drug leads. To enhance the discovery phase, a detailed comparative proteomic analysis was undertaken on milked venom from the mollusk-hunting cone snail, Conus textile, from three different geographic locations (Hawai'i, American Samoa and Australia's Great Barrier Reef). A novel milked venom conopeptide rich in post-translational modifications was discovered, characterized and named α-conotoxin TxIC. We assign this conopeptide to the 4/7 α-conotoxin family based on the peptide's sequence homology and cDNA pre-propeptide alignment. Pharmacologically, α-conotoxin TxIC demonstrates minimal activity on human acetylcholine receptor models (100 μM, <5% inhibition), compared to its high paralytic potency in invertebrates, PD50 = 34.2 nMol kg(-1). The non-post-translationally modified form, [Pro](2,8)[Glu](16)α-conotoxin TxIC, demonstrates differential selectivity for the α3β2 isoform of the nicotinic acetylcholine receptor with maximal inhibition of 96% and an observed IC50 of 5.4 ± 0.5 μM. Interestingly its comparative PD50 (3.6 μMol kg(-1)) in invertebrates was ~100 fold more than that of the native peptide. Differentiating α-conotoxin TxIC from other α-conotoxins is the high degree of post-translational modification (44% of residues). This includes the incorporation of γ-carboxyglutamic acid, two moieties of 4-trans hydroxyproline, two disulfide bond linkages, and C-terminal amidation. These findings expand upon the known chemical diversity of α-conotoxins and illustrate a potential driver of toxin phyla-selectivity within Conus.
2. Pegylated peptides. II. Solid-phase synthesis of amino-, carboxy- and side-chain pegylated peptides
Y A Lu, A M Felix Int J Pept Protein Res. 1994 Feb;43(2):127-38.
General procedures are presented for the site-specific pegylation of peptides at the NH2-terminus, side-chain positions (Lys or Asp/Glu) or COOH-terminus using solid-phase Fmoc/tBu methodologies. A model tridecapeptide fragment of interleukin-2, IL-2(44-56)-NH2, was chosen for this study since it possesses several trifunctional amino acids which serve as potential sites for pegylation. The pegylation reagents were designed to contain either Nle or Orn, which served as diagnostic amino acids for confirming the presence of 1 PEG unit per mole of peptide. NH2-Terminal pegylation was carried out by coupling PEG-CH2CO-Nle-OH to the free NH2-terminus of the peptide-resin. Side-chain pegylation of Lys or Asp was achieved by one of two pathways. Direct side-chain pegylation was accomplished by coupling with Fmoc-Lys(PEG-CH2CO-Nle)-OH or Fmoc-Asp(Nle-NH-CH2CH2-PEG)-OH, followed by solid-phase assemblage of the pegylated peptide-resin and TFA cleavage. Alternatively, allylic protective groups were introduced via Fmoc-Lys(Alloc)-OH or Fmoc-Asp(O-Allyl)-OH, and selectively removed by palladium-catalyzed deprotection after assemblage of the peptide-resin. Solid-phase pegylation of the side-chain of Lys or Asp was then carried out in the final stage with PEG-CH2CO-Nle-OH or H-Nle-NH-(CH2)2-PEG, respectively. COOH-Terminal pegylation was achieved through the initial attachment of Fmoc-Orn(PEG-CH2CO)-OH to the solid support, followed by solid-phase peptide synthesis using the Fmoc/tBu strategy. The pegylated peptides were purified by dialysis and preparative HPLC and were fully characterized by analytical HPLC, amino acid analysis, 1H-NMR spectroscopy and laser desorption mass spectrometry.
3. Efficient Fmoc/solid-phase synthesis of Abu(P)-containing peptides using Fmoc-Abu(PO3Me2)-OH
J W Perich Int J Pept Protein Res. 1994 Sep;44(3):288-94. doi: 10.1111/j.1399-3011.1994.tb00172.x.
The synthesis of the two 4-phosphono-2-aminobutanoyl-containing peptides, Leu-Arg-Arg-Val-Abu(P)-Leu-Gly-OH.CF3CO2H and Ile-Val-Pro-Asn-Abu(P)-Val-Glu-Glu-OH.CF3CO2H was accomplished by the use of Fmoc-Abu(PO3Me2)-OH in Fmoc/solid-phase peptide synthesis. The protected phosphoamino acid, Fmoc-Abu(PO3Me2)-OH, was prepared from Boc-Asp-OtBu in seven steps, the formation of the C-P linkage being effected by the treatment of Boc-Asa-OtBu with dimethyl trimethylsilyl phosphite. Peptide synthesis was performed using Wang Resin as the polymer support with both peptides assembled by the use of PyBOP for the coupling of Fmoc amino acids and 20% piperidine for cleavage of the Fmoc group from the Fmoc-peptide after each coupling cycle. Cleavage of the peptide from the resin and peptide deprotection was accomplished by the treatment of the peptide-resin with 5% thioanisole/TFA followed by cleavage of the methyl phosphonate group by 1 M bromotrimethylsilane/1 M thioanisole in TFA.
Online Inquiry
Verification code
Inquiry Basket