Type A Allatostatin I
Need Assistance?
  • US & Canada:
    +
  • UK: +

Type A Allatostatin I

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Type A Allatostatin I is a tridecapeptide. Type A allatostatins (AST-As) are a family of insect peptides with a conserved C-terminal FGL-amide motif.

Category
Peptide Inhibitors
Catalog number
BAT-009377
CAS number
123209-95-0
Molecular Formula
C61H94N18O16
Molecular Weight
1335.51
Type A Allatostatin I
IUPAC Name
(2S)-N-[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[2-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-2-oxoethyl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]propanoyl]amino]pentanediamide
Synonyms
Allatostatin 1; Ala-pro-ser-gly-ala-gln-arg-leu-tyr-gly-phe-gly-leu-NH2; Allatinhibin; Adpjhi; Apsgaqrlygfgl-amide
Sequence
APSGAQRLYGFGL
InChI
InChI=1S/C61H94N18O16/c1-32(2)24-41(51(64)86)72-49(84)29-68-53(88)43(26-36-12-8-7-9-13-36)73-50(85)30-69-54(89)44(27-37-16-18-38(81)19-17-37)77-58(93)42(25-33(3)4)76-56(91)39(14-10-22-67-61(65)66)75-57(92)40(20-21-47(63)82)74-52(87)35(6)71-48(83)28-70-55(90)45(31-80)78-59(94)46-15-11-23-79(46)60(95)34(5)62/h7-9,12-13,16-19,32-35,39-46,80-81H,10-11,14-15,20-31,62H2,1-6H3,(H2,63,82)(H2,64,86)(H,68,88)(H,69,89)(H,70,90)(H,71,83)(H,72,84)(H,73,85)(H,74,87)(H,75,92)(H,76,91)(H,77,93)(H,78,94)(H4,65,66,67)/t34-,35-,39-,40-,41-,42-,43-,44-,45-,46-/m0/s1
InChI Key
SDAFHXYVWUEZIJ-LRHNFOCQSA-N
Canonical SMILES
CC(C)CC(C(=O)N)NC(=O)CNC(=O)C(CC1=CC=CC=C1)NC(=O)CNC(=O)C(CC2=CC=C(C=C2)O)NC(=O)C(CC(C)C)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCC(=O)N)NC(=O)C(C)NC(=O)CNC(=O)C(CO)NC(=O)C3CCCN3C(=O)C(C)N
1. Somatostatin-type and allatostatin-C-type neuropeptides are paralogous and have opposing myoregulatory roles in an echinoderm
Ya Zhang, Luis Alfonso Yañez-Guerra, Ana B Tinoco, Nayeli Escudero Castelán, Michaela Egertová, Maurice R Elphick Proc Natl Acad Sci U S A. 2022 Feb 15;119(7):e2113589119. doi: 10.1073/pnas.2113589119.
Somatostatin (SS) and allatostatin-C (ASTC) are inhibitory neuropeptides in chordates and protostomes, respectively, which hitherto were identified as orthologs. However, echinoderms have two SS/ASTC-type neuropeptides (SS1 and SS2), and here, our analysis of sequence data indicates that SS1 is an ortholog of ASTC and SS2 is an ortholog of SS. The occurrence of both SS-type and ASTC-type neuropeptides in echinoderms provides a unique context to compare their physiological roles. Investigation of the expression and actions of the ASTC-type neuropeptide ArSS1 in the starfish Asterias rubens revealed that it causes muscle contraction (myoexcitation), contrasting with myoinhibitory effects of the SS-type neuropeptide ArSS2. Our findings suggest that SS-type and ASTC-type neuropeptides are paralogous and originated by gene duplication in a common ancestor of the Bilateria, with only one type being retained in chordates (SS) and protostomes (ASTC) but with both types being retained in echinoderms. Loss of ASTC-type and SS-type neuropeptides in chordates and protostomes, respectively, may have been due to their functional redundancy as inhibitory regulators of physiological processes. Conversely, the retention of both neuropeptide types in echinoderms may be a consequence of the evolution of a myoexcitatory role for ASTC-type neuropeptides mediated by as yet unknown signaling mechanisms.
2. B-type allatostatin regulates immune response of hemocytes in mud crab Scylla paramamosain
Zhanning Xu, Yujie Wei, Guizhong Wang, Haihui Ye Dev Comp Immunol. 2021 Jul;120:104050. doi: 10.1016/j.dci.2021.104050. Epub 2021 Feb 22.
B-type allatostatins (AST-B) are neuropeptides that have important physiological roles in arthropods, they have also been identified in a number of crustacean species. Recent research on neuroendocrine-immune (NEI) regulatory system in invertebrates has exploded, it reveals that the NEI network plays an indispensable role in optimizing the immune response and maintaining homeostasis. Herein, mud crab Scylla paramamosain provides a primitive and ancient model to study crosstalk between the neuroendocrine and immune systems. In this study, qRT-PCR analysis showed that the nervous system was the main production site for Sp-AST-B mRNA in S. paramamosain, while its receptor gene (Sp-AST-BR) mRNA could be detected in all the analyzed tissues including hemocytes. This reveals that AST-B might act as a pleiotropic neuropeptide. In situ hybridization further confirmed that granular cells of hemocyte subpopulations express Sp-AST-BR. Time-course analysis revealed that bacteria-analog LPS or virus-analog Poly (I:C) challenge significantly induced Sp-AST-B expression in the thoracic ganglion, and the expression of Sp-AST-BR in hemocytes were also positively changed. Furthermore, mud crabs treated with a synthetic AST-B peptide significantly increased the mRNA levels of AST-BR, nuclear factor-κB (NF-κB) transcription factor (Dorsal and Relish), pro-inflammatory cytokine (IL-16) and immune-effector molecules, and also dramatically enhanced the nitric oxide (NO) production and phagocytic activity in hemocytes. Meanwhile dsRNA-mediated knockdown of Sp-AST-B remarkably suppressed the NO concentrations, phagocytic activity and the expression of immune related genes, resulting in markedly impaired ability of crabs to inhibit bacterial proliferation in vivo. Combined, these data demonstrate that AST-B induced innate immune in the mud crab.
3. Allatostatin-type A, kisspeptin and galanin GPCRs and putative ligands as candidate regulatory factors of mantle function
João C R Cardoso, Rute C Félix, Nadège Bjärnmark, Deborah M Power Mar Genomics. 2016 Jun;27:25-35. doi: 10.1016/j.margen.2015.12.003. Epub 2015 Dec 30.
Allatostatin-type A (AST-A), kisspeptin (KISS) and galanin (GAL) G-protein coupled receptor (GPCR) systems share a common ancestral origin in arthropods and the vertebrates where they regulate metabolism and reproduction. The molluscs are the second most diverse phylum in the animal kingdom, they occupy an important phylogenetic position, and their genome is more similar to deuterostomes than the arthropods and nematodes and thus they are good models for studies of gene family evolution and function. This mini-review intends to extend the current knowledge about AST-A, KISS and GAL GPCR system evolution and their putative function in the mollusc mantle. Comparative evolutionary analysis of the target GPCR systems was established by identifying homologues in genomes and tissue transcriptome datasets available for molluscs and comparing them to those of other metazoan systems. Studies in arthropods have revealed the existence of the AST-A system but the loss of homologues of the KISS and GAL systems. Homologues of the insect AST-AR and vertebrate KISSR genes were found in molluscs but putative GALR genes were absent. Receptor gene number suggested that members of this family have suffered lineage specific evolution during the molluscan radiation. In molluscs, orthologues of the insect AST-A peptides were not identified but buccalin peptides that are structurally related were identified and are putative receptor agonists. The identification of AST-AR and KISSR genes in molluscs strengthens the hypotheses that in metazoans members of the AST-AR subfamily share evolutionary proximity with KISSRs. The variable number of receptors and large repertoire of buccalin peptides may be indicative of the functional diversity of the AST-AR/KISSR systems in molluscs. The identification of AST-A and KISS receptors and ligands in the mantle transcriptome indicates that in molluscs they may have acquired a novel function and may play a role in shell development or sensory detection in the mantle.
Online Inquiry
Verification code
Inquiry Basket