Boc-Ala-Ala-Gly-pNA
Need Assistance?
  • US & Canada:
    +
  • UK: +

Boc-Ala-Ala-Gly-pNA

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

A substrate for glycine endopeptidase (chymopapain M) from Papaya carica.

Category
Others
Catalog number
BAT-015651
CAS number
90037-94-8
Molecular Formula
C19H27N5O7
Molecular Weight
437.45
Boc-Ala-Ala-Gly-pNA
IUPAC Name
tert-butyl N-[(2S)-1-[[(2S)-1-[[2-(4-nitroanilino)-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]carbamate
Synonyms
tert-butyl N-[(2S)-1-[[(2S)-1-[[2-(4-nitroanilino)-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]carbamate
Purity
95%
Density
1.283±0.06 g/cm3
Boiling Point
776.1±60.0 °C at 760 mmHg
Sequence
Boc-Ala-Ala-Gly-pNA
Storage
Store at -20°C
InChI
InChI=1S/C19H27N5O7/c1-11(21-17(27)12(2)22-18(28)31-19(3,4)5)16(26)20-10-15(25)23-13-6-8-14(9-7-13)24(29)30/h6-9,11-12H,10H2,1-5H3,(H,20,26)(H,21,27)(H,22,28)(H,23,25)/t11-,12-/m0/s1
InChI Key
YODBYCPAGJDVOM-RYUDHWBXSA-N
Canonical SMILES
CC(C(=O)NCC(=O)NC1=CC=C(C=C1)[N+](=O)[O-])NC(=O)C(C)NC(=O)OC(C)(C)C
1. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex
Mohamed Azarkan, André Matagne, Ruddy Wattiez, Laetitia Bolle, Julie Vandenameele, Danielle Baeyens-Volant Phytochemistry. 2011 Oct;72(14-15):1718-31. doi: 10.1016/j.phytochem.2011.05.009. Epub 2011 Jun 12.
The latex of Ficus carica constitutes an important source of many proteolytic components known under the general term of ficin (EC 3.4.22.3) which belongs to the cysteine proteases of the papain family. So far, no data on the purification and characterization of individual forms of these proteases are available. An effective strategy was used to fractionate and purify to homogeneity five ficin forms, designated A, B, C, D1 and D2 according to their sequence of elution from a cation-exchange chromatographic support. Following rapid fractionation on a SP-Sepharose Fast Flow column, the different ficin forms were chemically modified by a specific and reversible monomethoxypolyethylene glycol (mPEG) reagent. In comparison with their un-derivatized counterparts, the mPEG-protein derivatives behaved differently on the ion-exchanger, allowing us for the first time to obtain five highly purified ficin molecular species titrating 1mol of thiol group per mole of enzyme. The purified ficins were characterized by de novo peptide sequencing and peptide mass fingerprinting analyzes, using mass spectrometry. Circular dichroism measurements indicated that all five ficins were highly structured, both in term of secondary and tertiary structure. Furthermore, analysis of far-UV CD spectra allowed calculation of their secondary structural content. Both these data and the molecular masses determined by MS reinforce the view that the enzymes belong to the family of papain-like proteases. The five ficin forms also displayed different specific amidase activities against small synthetic substrates like dl-BAPNA and Boc-Ala-Ala-Gly-pNA, suggesting some differences in their active site organization. Enzymatic activity of the five ficin forms was completely inhibited by specific cysteine and cysteine/serine proteases inhibitors but was unaffected by specific serine, aspartic and metallo proteases inhibitors.
2. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms
André Matagne, Laetitia Bolle, Rachida El Mahyaoui, Danielle Baeyens-Volant, Mohamed Azarkan Phytochemistry. 2017 Jun;138:29-51. doi: 10.1016/j.phytochem.2017.02.019. Epub 2017 Feb 23.
Crude pineapple proteases extract (aka stem bromelain; EC 3.4.22.4) is an important proteolytic mixture that contains enzymes belonging to the cysteine proteases of the papain family. Numerous studies have been reported aiming at the fractionation and characterization of the many molecular species present in the extract, but more efforts are still required to obtain sufficient quantities of the various purified protease forms for detailed physicochemical, enzymatic and structural characterization. In this work, we describe an efficient strategy towards the purification of at least eight enzymatic forms. Thus, following rapid fractionation on a SP-Sepharose FF column, two sub-populations with proteolytic activity were obtained: the unbound (termed acidic) and bound (termed basic) bromelain fractions. Following reversible modification with monomethoxypolyethylene glycol (mPEG), both fractions were further separated on Q-Sepharose FF and SP-Sepharose FF, respectively. This procedure yielded highly purified molecular species, all titrating ca. 1 mol of thiol group per mole of enzyme, with distinct biochemical properties. N-terminal sequencing allowed identifying at least eight forms with proteolytic activity. The basic fraction contained previously identified species, i.e. basic bromelain forms 1 and 2, ananain forms 1 and 2, and comosain (MEROPS identifier: C01.027). Furthermore, a new proteolytic species, showing similarities with basic bomelain forms 1 and 2, was discovered and termed bromelain form 3. The two remaining species were found in the acidic bromelain fraction and were arbitrarily named acidic bromelain forms 1 and 2. Both, acidic bromelain forms 1, 2 and basic bromelain forms 1, 2 and 3 are glycosylated, while ananain forms 1 and 2, and comosain are not. The eight protease forms display different amidase activities against the various substrates tested, namely small synthetic chromogenic compounds (DL-BAPNA and Boc-Ala-Ala-Gly-pNA), fluorogenic compounds (like Boc-Gln-Ala-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC), and proteins (azocasein and azoalbumin), suggesting a specific organization of their catalytic residues. All forms are completely inhibited by specific cysteine and cysteine/serine protease inhibitors, but not by specific serine and aspartic protease inhibitors, with the sole exception of pepstatin A that significantly affects acidic bromelain forms 1 and 2. For all eight protease forms, inhibition is also observed with 1,10-phenanthrolin, a metalloprotease inhibitor. Metal ions (i.e. Mn2+, Mg2+ and Ca2+) showed various effects depending on the protease under consideration, but all of them are totally inhibited in the presence of Zn2+. Mass spectrometry analyses revealed that all forms have a molecular mass of ca. 24 kDa, which is characteristic of enzymes belonging to the papain-like proteases family. Far-UV CD spectra analysis further supported this analysis. Interestingly, secondary structure calculation proves to be highly reproducible for all cysteine proteases of the papain family tested so far (this work; see also Azarkan et al., 2011; Baeyens-Volant et al., 2015) and thus can be used as a test for rapid identification of the classical papain fold.
Online Inquiry
Verification code
Inquiry Basket