Myostatin inhibitory peptide 7
Need Assistance?
  • US & Canada:
    +
  • UK: +

Myostatin inhibitory peptide 7

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Myostatin inhibitory peptide 7 is an actin, a secreted growth differentiation factor.

Category
Peptide Inhibitors
Catalog number
BAT-009085
CAS number
1621169-52-5
Molecular Formula
C133H227N43O33
Molecular Weight
2956.5
IUPAC Name
(4S)-5-[[(2S)-1-[[(2S,3S)-1-[[(2S)-6-amino-1-[[(2S,3S)-1-[[(2S)-5-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-4-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-aminopropanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-4-oxobutanoyl]amino]-3-hydroxybutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylpentanoyl]amino]-5-oxopentanoic acid
Synonyms
ACE-031
Purity
>98%
Density
1.4±0.1 g/cm3
Sequence
AWRQNTRYSRIEAIKIQILSKLRL
Storage
Store at -20°C
InChI
InChI=1S/C133H227N43O33/c1-18-68(11)101(125(205)160-81(35-25-27-51-135)115(195)173-102(69(12)19-2)126(206)162-87(45-48-98(138)182)117(197)175-104(71(14)21-4)128(208)169-91(58-67(9)10)119(199)170-95(63-177)123(203)157-80(34-24-26-50-134)112(192)166-90(57-66(7)8)118(198)155-83(37-29-53-150-131(143)144)111(191)164-89(106(140)186)56-65(5)6)172-108(188)73(16)154-109(189)88(46-49-100(184)185)163-127(207)103(70(13)20-3)174-116(196)85(39-31-55-152-133(147)148)158-124(204)96(64-178)171-120(200)92(59-75-40-42-77(180)43-41-75)167-113(193)84(38-30-54-151-132(145)146)161-129(209)105(74(17)179)176-122(202)94(61-99(139)183)168-114(194)86(44-47-97(137)181)159-110(190)82(36-28-52-149-130(141)142)156-121(201)93(165-107(187)72(15)136)60-76-62-153-79-33-23-22-32-78(76)79/h22-23,32-33,40-43,62,65-74,80-96,101-105,153,177-180H,18-21,24-31,34-39,44-61,63-64,134-136H2,1-17H3,(H2,137,181)(H2,138,182)(H2,139,183)(H2,140,186)(H,154,189)(H,155,198)(H,156,201)(H,157,203)(H,158,204)(H,159,190)(H,160,205)(H,161,209)(H,162,206)(H,163,207)(H,164,191)(H,165,187)(H,166,192)(H,167,193)(H,168,194)(H,169,208)(H,170,199)(H,171,200)(H,172,188)(H,173,195)(H,174,196)(H,175,197)(H,176,202)(H,184,185)(H4,141,142,149)(H4,143,144,150)(H4,145,146,151)(H4,147,148,152)/t68-,69-,70-,71-,72-,73-,74+,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,101-,102-,103-,104-,105-/m0/s1
InChI Key
HXWLNPUQPASIHW-OOXKGWPCSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(CCC(=O)N)C(=O)NC(C(C)CC)C(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(C)C)C(=O)N)NC(=O)C(C)NC(=O)C(CCC(=O)O)NC(=O)C(C(C)CC)NC(=O)C(CCCNC(=N)N)NC(=O)C(CO)NC(=O)C(CC1=CC=C(C=C1)O)NC(=O)C(CCCNC(=N)N)NC(=O)C(C(C)O)NC(=O)C(CC(=O)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC2=CNC3=CC=CC=C32)NC(=O)C(C)N
1. Design and synthesis of potent myostatin inhibitory cyclic peptides
Cédric Rentier, Kentaro Takayama, Mariko Saitoh, Akari Nakamura, Hiroaki Ikeyama, Akihiro Taguchi, Atsuhiko Taniguchi, Yoshio Hayashi Bioorg Med Chem. 2019 Apr 1;27(7):1437-1443. doi: 10.1016/j.bmc.2019.02.019. Epub 2019 Feb 10.
Myostatin is a negative regulator of skeletal muscle growth and myostatin inhibitors are promising lead compounds against muscle atrophic disorders such as muscular dystrophy. Previously, we published the first report of synthetic myostatin inhibitory 23-mer peptide 1, which was identified from a myostatin precursor-derived prodomain protein. Our structure-activity relationship study afforded the potent inhibitory peptide 3. In this paper, we report an investigation of the synthesis of conformationally-constrained cyclic peptide based on the linear peptide 3. To examine the potency of side chain-to-side chain cyclized peptides, a series of disulfide-, lactam- and diester-bridged derivatives were designed and synthesized, and their myostatin inhibitory activities were evaluated. The diester-bridged peptide (11) displayed potent inhibitory activity with an in vitro IC50 value of 0.26 µM, suggesting that it could serve as a new platform for development of cyclic peptide inhibitors.
2. Development of Potent Myostatin Inhibitory Peptides through Hydrophobic Residue-Directed Structural Modification
Kentaro Takayama, et al. ACS Med Chem Lett. 2017 Jun 6;8(7):751-756. doi: 10.1021/acsmedchemlett.7b00168. eCollection 2017 Jul 13.
Myostatin, a negative regulator of skeletal muscle growth, is a promising target for treating muscle atrophic disorders. Recently, we discovered a minimal myostatin inhibitor 1 (WRQNTRYSRIEAIKIQILSKLRL-amide) derived from positions 21-43 of the mouse myostatin prodomain. We previously identified key residues (N-terminal Trp21, rodent-specific Tyr27, and all aliphatic amino acids) required for effective inhibition through structure-activity relationship (SAR) studies based on 1 and characterized a 3-fold more potent inhibitor 2 bearing a 2-naphthyloxyacetyl group at position 21. Herein, we performed 1-based SAR studies focused on all aliphatic residues and Ala32, discovering that the incorporations of Trp and Ile at positions 32 and 38, respectively, enhanced the inhibitory activity. Combining these findings with 2, a novel peptide 3d displayed an IC50 value of 0.32 μM, which is 11 times more potent than 1. The peptide 3d would have the potential to be a promising drug lead to develop better peptidomimetics.
3. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy
Yutaka Ohsawa, et al. PLoS One. 2015 Jul 30;10(7):e0133713. doi: 10.1371/journal.pone.0133713. eCollection 2015.
Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings.
Online Inquiry
Verification code
Inquiry Basket