N-α-(9-Fluorenylmethoxycarbonyl)-N-α-methyl-N-β-trityl-L-asparagine
Need Assistance?
  • US & Canada:
    +
  • UK: +

N-α-(9-Fluorenylmethoxycarbonyl)-N-α-methyl-N-β-trityl-L-asparagine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-004756
CAS number
941296-80-6
Molecular Formula
C39H34N2O5
Molecular Weight
610.72
N-α-(9-Fluorenylmethoxycarbonyl)-N-α-methyl-N-β-trityl-L-asparagine
IUPAC Name
(2S)-2-[9H-fluoren-9-ylmethoxycarbonyl(methyl)amino]-4-oxo-4-(tritylamino)butanoic acid
Synonyms
Fmoc-MeAsn(Trt)-OH
Appearance
White to off-white powder
Purity
≥ 99% (HPLC, Chiral HPLC)
Density
1.260±0.06 g/cm3(Predicted)
Melting Point
231-235 °C
Boiling Point
836.3±65.0 °C(Predicted)
Storage
Store at 2-8°C
InChI
InChI=1S/C39H34N2O5/c1-41(38(45)46-26-34-32-23-13-11-21-30(32)31-22-12-14-24-33(31)34)35(37(43)44)25-36(42)40-39(27-15-5-2-6-16-27,28-17-7-3-8-18-28)29-19-9-4-10-20-29/h2-24,34-35H,25-26H2,1H3,(H,40,42)(H,43,44)/t35-/m0/s1
InChI Key
YZBDIRBPZCFMAZ-DHUJRADRSA-N
Canonical SMILES
CN(C(CC(=O)NC(C1=CC=CC=C1)(C2=CC=CC=C2)C3=CC=CC=C3)C(=O)O)C(=O)OCC4C5=CC=CC=C5C6=CC=CC=C46

N-α-(9-Fluorenylmethoxycarbonyl)-N-α-methyl-N-β-trityl-L-asparagine, often abbreviated as Fmoc-Asn(Trt)-OH, is a chemical building block used in peptide synthesis and has a range of specific applications. Here are some key applications:

Solid-Phase Peptide Synthesis: Fmoc-Asn(Trt)-OH is widely used in solid-phase peptide synthesis (SPPS) as a protected amino acid. The Fmoc (fluorenylmethyloxycarbonyl) group allows for selective deprotection during the synthesis process without affecting the trityl group. This ensures that the L-asparagine residue is incorporated accurately into the growing peptide chain, facilitating the creation of complex peptides for research and therapeutic purposes.

Proteomics Research: In proteomics, Fmoc-Asn(Trt)-OH is essential for synthesizing peptide fragments that mimic portions of proteins. These synthetic peptides can be used to study protein-protein interactions, enzyme activity, and immune responses. The high purity and specific protection of the asparagine side chain help in obtaining reliable and reproducible research data.

Drug Development: During the early stages of drug development, synthesis of peptides containing asparagine can help in assessing the interaction between potential drug candidates and their targets. Fmoc-Asn(Trt)-OH allows for the precise inclusion of asparagine in peptide chains, which is critical for maintaining the structural and functional integrity of bioactive peptides. This is particularly important in designing peptide-based therapeutics and vaccines.

Bioconjugation: Fmoc-Asn(Trt)-OH can be employed in bioconjugation techniques to create peptide-based probes or therapeutic molecules. By incorporating this protected amino acid, researchers can introduce functional groups at specific positions in the peptide sequence. This facilitates the attachment of various molecules, such as fluorescent dyes, drugs, or other biomolecules, enhancing the ability to track, visualize, or deliver therapeutic agents in biological systems.

1. A 'conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile--the pharmacological importance of post-translational modifications
Zachary L Bergeron, et al. Peptides. 2013 Nov;49:145-58. doi: 10.1016/j.peptides.2013.09.004. Epub 2013 Sep 18.
Cone snail venoms provide a largely untapped source of novel peptide drug leads. To enhance the discovery phase, a detailed comparative proteomic analysis was undertaken on milked venom from the mollusk-hunting cone snail, Conus textile, from three different geographic locations (Hawai'i, American Samoa and Australia's Great Barrier Reef). A novel milked venom conopeptide rich in post-translational modifications was discovered, characterized and named α-conotoxin TxIC. We assign this conopeptide to the 4/7 α-conotoxin family based on the peptide's sequence homology and cDNA pre-propeptide alignment. Pharmacologically, α-conotoxin TxIC demonstrates minimal activity on human acetylcholine receptor models (100 μM, <5% inhibition), compared to its high paralytic potency in invertebrates, PD50 = 34.2 nMol kg(-1). The non-post-translationally modified form, [Pro](2,8)[Glu](16)α-conotoxin TxIC, demonstrates differential selectivity for the α3β2 isoform of the nicotinic acetylcholine receptor with maximal inhibition of 96% and an observed IC50 of 5.4 ± 0.5 μM. Interestingly its comparative PD50 (3.6 μMol kg(-1)) in invertebrates was ~100 fold more than that of the native peptide. Differentiating α-conotoxin TxIC from other α-conotoxins is the high degree of post-translational modification (44% of residues). This includes the incorporation of γ-carboxyglutamic acid, two moieties of 4-trans hydroxyproline, two disulfide bond linkages, and C-terminal amidation. These findings expand upon the known chemical diversity of α-conotoxins and illustrate a potential driver of toxin phyla-selectivity within Conus.
2. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine
C M Gross, D Lelièvre, C K Woodward, G Barany J Pept Res. 2005 Mar;65(3):395-410. doi: 10.1111/j.1399-3011.2005.00241.x.
Native chemical ligation has proven to be a powerful method for the synthesis of small proteins and the semisynthesis of larger ones. The essential synthetic intermediates, which are C-terminal peptide thioesters, cannot survive the repetitive piperidine deprotection steps of N(alpha)-9-fluorenylmethoxycarbonyl (Fmoc) chemistry. Therefore, peptide scientists who prefer to not use N(alpha)-t-butyloxycarbonyl (Boc) chemistry need to adopt more esoteric strategies and tactics in order to integrate ligation approaches with Fmoc chemistry. In the present work, side-chain and backbone anchoring strategies have been used to prepare the required suitably (partially) protected and/or activated peptide intermediates spanning the length of bovine pancreatic trypsin inhibitor (BPTI). Three separate strategies for managing the critical N-terminal cysteine residue have been developed: (i) incorporation of N(alpha)-9-fluorenylmethoxycarbonyl-S-(N-methyl-N-phenylcarbamoyl)sulfenylcysteine [Fmoc-Cys(Snm)-OH], allowing creation of an otherwise fully protected resin-bound intermediate with N-terminal free Cys; (ii) incorporation of N(alpha)-9-fluorenylmethoxycarbonyl-S-triphenylmethylcysteine [Fmoc-Cys(Trt)-OH], generating a stable Fmoc-Cys(H)-peptide upon acidolytic cleavage; and (iii) incorporation of N(alpha)-t-butyloxycarbonyl-S-fluorenylmethylcysteine [Boc-Cys(Fm)-OH], generating a stable H-Cys(Fm)-peptide upon cleavage. In separate stages of these strategies, thioesters are established at the C-termini by selective deprotection and coupling steps carried out while peptides remain bound to the supports. Pilot native chemical ligations were pursued directly on-resin, as well as in solution after cleavage/purification.
3. Syntheses of T(N) building blocks Nalpha-(9-fluorenylmethoxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-galactopyranosyl)-L-serine/L-threonine pentafluorophenyl esters: comparison of protocols and elucidation of side reactions
Mian Liu, Victor G Young Jr, Sachin Lohani, David Live, George Barany Carbohydr Res. 2005 May 23;340(7):1273-85. doi: 10.1016/j.carres.2005.02.029.
T(N) antigen building blocks Nalpha-(9-fluorenylmethoxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-galactopyranosyl)-L-serine/L-threonine pentafluorophenyl ester [Fmoc-L-Ser/L-Thr(Ac3-alpha-D-GalN3)-OPfp, 13/14] have been synthesized by two different routes, which have been compared. Overall isolated yields [three or four chemical steps, and minimal intermediary purification steps] of enantiopure 13 and 14 were 5-18% and 6-10%, respectively, based on 3,4,6-tri-O-acetyl-D-galactal (1). A byproduct of the initial azidonitration reaction of the synthetic sequence, that is, N-acetyl-3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-galactopyranosylamine (5), has been characterized by X-ray crystallography, and shown by 1H NMR spectroscopy to form complexes with lithium bromide, lithium iodide, or sodium iodide in acetonitrile-d3. Intermediates 3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-galactopyranosyl bromide (6) and 3,4,6-tri-O-acetyl-2-azido-2-deoxy-beta-D-galactopyranosyl chloride (7) were used to glycosylate Nalpha-(9-fluorenylmethoxycarbonyl)-L-serine/L-threonine pentafluorophenyl esters [Fmoc-L-Ser/L-Thr-OPfp, 11/12]. Previously undescribed low-level dehydration side reactions were observed at this stage; the unwanted byproducts were easily removed by column chromatography.
Online Inquiry
Inquiry Basket