4-Hydroxyethyl resin
Need Assistance?
  • US & Canada:
    +
  • UK: +

4-Hydroxyethyl resin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Other Resins
Catalog number
BAT-001018
Synonyms
HO-Ethyl-Resin; Polystyrene A OH; 4-Hydroxyethylated polystyrene
DVB Crosslinking
1% DVB
Substitution
1.0-1.4 meq/g
Storage
Store at 2-8 °C
1. Quantitative identification of and exposure to synthetic phenolic antioxidants, including butylated hydroxytoluene, in urine
Wei Wang, Kurunthachalam Kannan Environ Int. 2019 Jul;128:24-29. doi: 10.1016/j.envint.2019.04.028. Epub 2019 Apr 25.
Synthetic phenolic antioxidants (SPAs) such as 2,6-di-tert-butyl-4-hydroxytoluene (butylated hydroxytoluene, BHT), are used in a wide variety of consumer products, including certain foodstuffs (e.g. fats and oils) and cosmetics. Although BHT is considered generally safe as a food preservative when used at approved concentrations, there is debate whether BHT exposure is linked to cancer, asthma, and behavioral issues in children. Little is known with regard to human exposure to SPAs and the methods to measure these chemicals in urine. In this study, six SPAs and the metabolites were analyzed in 145 urine samples collected from four Asian countries (China, India, Japan, and Saudi Arabia) and the United States. BHT was found in 88% of the urine samples at median and maximum concentrations of 1.26 and 15 ng/mL, respectively. BHT metabolites and butylated hydroxyanisole (BHA) were found in 39% to 89% of the urine samples at a concentration range of
2. Synthetic Phenolic Antioxidants and Their Metabolites in Indoor Dust from Homes and Microenvironments
Wei Wang, et al. Environ Sci Technol. 2016 Jan 5;50(1):428-34. doi: 10.1021/acs.est.5b04826. Epub 2015 Dec 17.
Synthetic phenolic antioxidants (SPAs), including 2,6-di-tert-butyl-4-hydroxytoluene (BHT), are extensively used in food, cosmetic and plastic industries. Nevertheless, limited information is available on human exposures, other than the dietary sources, to SPAs. In this study, occurrence of 9 SPAs and their metabolites/degradation products was determined in 339 indoor dust collected from 12 countries. BHT was found in 99.5% of indoor dust samples from homes and microenvironments at concentrations that ranged from < LOQ to 118 μg/g and 0.10 to 3460 μg/g, respectively. This is the first study to measure BHT metabolites in house dust (0.01-35.1 μg/g) and their concentrations accounted for 9.2-58% of the sum concentrations (∑SPAs). 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO), 2,6-di-tert-butyl-4-(hydroxymethyl)phenol (BHT-OH), 2,6-di-tert-butyl-1,4-benzoquinone (BHT-Q) were the major derivatives of BHT found in dust samples. The concentrations of gallic acid esters (gallates) in dust from homes and microenvironments ranged from < LOQ to 18.2 and < LOQ to 684 μg/g, respectively. The concentrations and profiles of SPAs varied among countries and microenvironments. Significantly elevated concentrations of SPAs were found in dust from an e-waste workshop (1530 μg/g). The estimated daily intake (EDI) of BHT via house dust ingestion ranged from 0.40 to 222 ng/kg/d (95th percentile).
3. Occurrence of synthetic phenolic antioxidants and transformation products in urban and rural indoor dust
Runzeng Liu, Yongfeng Lin, Ting Ruan, Guibin Jiang Environ Pollut. 2017 Feb;221:227-233. doi: 10.1016/j.envpol.2016.11.069.
In this study, seven synthetic phenolic antioxidant (SPA) analogues were positively found in urban and rural indoor dust samples collected from Shandong province in China, among which the novel 2,4,6-tri-tert-butylphenol (AO 246), 2,6-di-tert-butyl-4-sec-butylphenol (DTBSBP), 2,4-di-tert-butylphenol (DBP) and 4,4'-butylidenebis (2-(1,1-dimethylethyl)-5- methyl-phenol) (AO 44B25) analogues accounted for 29% of total SPA concentrations (∑SPAs). Urban dust showed significantly higher ∑SPA levels (range: 1.56e3 - 2.03e4 ng/g) compared with those in rural indoor dust (668-4.39e3 ng/g, p < 0.05). 2,6-Di-tert-butyl-4-methylphenol (BHT) was the dominate analogue in the urban indoor dust, which constituted of 74% in ΣSPAs. While, varied composition profiles of SPAs were noticed in rural indoor dust, for instance, AO 246 (46%) and BHT (43%) had similar contributions to ∑SPAs. Three BHT transformation products (TPs) were also detected in most of the urban and rural dust samples (>97%), with individual residue level in the same order: 2,6-di-tert-butyl-1,4-benzoquinone (BHT-Q) > 2,6-di-tert-butyl-4-hydroxy- 4-methyl-2,5-cyclo-hexadienone (BHT-quinol) > 3,5-di-tert-butyl-4-hydroxybenzal-dehyde (BHT-CHO). Geometric mean values of total TP concentrations were 555 ng/g and 131 ng/g for urban and rural indoor dust samples, respectively. A preliminary estimated daily intake calculation at dust ingestion scenario suggested additional concerns might be paid to simultaneous exposure of several SPA analogues and TPs besides current focus on BHT exposure risks.
Online Inquiry
Verification code
Inquiry Basket