Calmodulin Binding Peptide 1
Need Assistance?
  • US & Canada:
    +
  • UK: +

Calmodulin Binding Peptide 1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Calmodulin Binding Peptide 1, a high affinity (pM) CaM-Binding Peptide derived from smooth muscle myosin light chain kinase (MLCK) Peptide, strongly inhibits IP3-induced Ca2+ release.

Category
Peptide Inhibitors
Catalog number
BAT-009345
CAS number
104041-80-7
Molecular Formula
C231H373N69O70S2
Molecular Weight
5300.97
IUPAC Name
(4S)-5-[(1S)-1-[N-[(1S,2R)-1-[N-[(1S)-2-[(1S)-2-[(1S)-5-amino-1-[N-[(1S,2R)-1-[N-[(1S)-2-[(1S)-2-[(2S)-2-[N-[(1S)-2-[(1S)-5-amino-1-[N-[(1S)-2-[(1S)-2-[(1S)-1-[N-[(1S)-1-[N-[(1S)-1-[N-[(1S)-1-[N-[(1S)-2-[(1S,2R)-1-[N-[(1S)-1-[N-[(1S)-2-[(1S,2R)-1-[N-[(1S)-2-[(1S)-1-[N-[(1S)-2-[(1S,2S)-1-[N-[(1S)-5-amino-1-[N-[(1S)-3-carboxy-1-[N-[(1S)-1-[N-[(1S)-1-[N-[(1S)-3-carboxy-1-[N-[(1S)-1-[N-[(1S)-2-[(1S)-1-[N-[(1S)-2-[(1S)-1-[N-[(1S)-1-[N-[(1S)-1-[N-[(1S)-1-[N-[(1S)-1-carboxyethyl]-C-hydroxy-carbonimidoyl]-3-methyl-butyl]-C-hydroxy-carbonimidoyl]-4-hydroxy-4-imino-butyl]-C-hydroxy-carbonimidoyl]-4-hydroxy-4-imino-butyl]-C-hydroxy-carbonimidoyl]-3-methyl-butyl]imino-2-hydroxy-1-(hydroxymethyl)ethyl]-C-hydroxy-carbonimidoyl]-4-guanidino-butyl]imino-2-hydroxy-1-(1H-indol-3-ylmethyl)ethyl]-C-hydroxy-carbonimidoyl]-4-guanidino-butyl]-C-hydroxy-carbonimidoyl]propyl]-C-hydroxy-carbonimidoyl]-3-hydroxy-3-imino-propyl]-C-hydroxy-carbonimidoyl]-3-methyl-butyl]-C-hydroxy-carbonimidoyl]propyl]-C-hydroxy-carbonimidoyl]pentyl]-C-hydroxy-carbonimidoyl]-2-methyl-butyl]imino-2-hydroxy-1-(hydroxymethyl)ethyl]-C-hydroxy-carbonimidoyl]-3-hydroxy-3-imino-propyl]imino-1-benzyl-2-hydroxy-ethyl]-C-hydroxy-carbonimidoyl]-2-hydroxy-propyl]imino-2-hydroxy-1-methyl-ethyl]-C-hydroxy-carbonimidoyl]-2-methyl-propyl]-C-hydroxy-carbonimidoyl]-2-hydroxy-propyl]imino-2-hydroxy-1-(1H-imidazol-5-ylmethyl)ethyl]-C-hydroxy-carbonimidoyl]-2-methyl-propyl]-C-hydroxy-carbonimidoyl]-3-methylsulfanyl-propyl]-C-hydroxy-carbonimidoyl]-3-methyl-butyl]-C-hydroxy-carbonimidoyl]-4-guanidino-butyl]imino-2-hydroxy-1-methyl-ethyl]imino-2-hydroxy-1-(hydroxymethyl)ethyl]-C-hydroxy-carbonimidoyl]pentyl]imino-2-hydroxy-1-(1H-indol-3-ylmethyl)ethyl]-C-hydroxy-carbonimidoyl]pyrrolidin-1-yl]-1-(hydroxymethyl)-2-oxo-ethyl]imino-2-hydroxy-1-methyl-ethyl]-C-hydroxy-carbonimidoyl]-2-hydroxy-propyl]-C-hydroxy-carbonimidoyl]pentyl]imino-2-hydroxy-1-(hydroxymethyl)ethyl]imino-1-(carboxymethyl)-2-hydroxy-ethyl]-C-hydroxy-carbonimidoyl]-2-hydroxy-propyl]-C-hydroxy-carbonimidoyl]-3-carboxy-propyl]imino-4-[[(2S)-2-[[[(2S)-1-[(2S)-2-[[(2S)-2-[(2-amino-1-hydroxy-ethylidene)amino]-1-hydroxy-3-methyl-butylidene]amino]-4-methylsulfanyl-butanoyl]pyrrolidin-2-yl]-hydroxy-methylene]amino]-5-guanidino-1-hydroxy-pentylidene]amino]-5-hydroxy-pentanoic acid
Synonyms
Gly-Val-Met-Pro-Arg-Glu-Glu-Thr-Asp-Ser-Lys-Thr-Ala-Ser-Pro-Trp-Lys-Ser-Ala-Arg-Leu-Met-Val-His-Thr-Val-Ala-Thr-Phe-Asn-Ser-Ile-Lys-Glu-Leu-Asn-Glu-Arg-Trp-Arg-Ser-Leu-Gln-Gln-Leu-Ala
Appearance
White Lyophilized Powder
Purity
≥95%
Sequence
GVMPREETDSKTASPWKSARLMVHTVATFNSIKELNERWRSLQQLA
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C231H373N69O70S2/c1-27-115(16)178(220(362)273-133(54-36-39-77-233)186(328)267-143(66-72-172(319)320)196(338)277-150(90-111(8)9)203(345)280-155(95-167(238)312)207(349)270-142(65-71-171(317)318)193(335)261-136(57-42-80-250-229(242)243)189(331)279-152(92-125-99-253-130-51-33-31-49-128(125)130)205(347)263-137(58-43-81-251-230(244)245)191(333)287-160(104-303)213(355)278-149(89-110(6)7)201(343)269-139(62-68-165(236)310)192(334)265-140(63-69-166(237)311)195(337)275-147(87-108(2)3)200(342)259-119(20)227(369)370)294-214(356)161(105-304)289-208(350)156(96-168(239)313)281-204(346)151(91-124-47-29-28-30-48-124)283-222(364)180(121(22)307)295-185(327)118(19)257-217(359)176(113(12)13)293-224(366)182(123(24)309)298-210(352)154(94-127-101-248-107-255-127)284-219(361)177(114(14)15)292-199(341)145(74-85-371-25)271-202(344)148(88-109(4)5)276-188(330)135(56-41-79-249-228(240)241)260-183(325)116(17)256-211(353)158(102-301)286-190(332)132(53-35-38-76-232)262-206(348)153(93-126-100-254-131-52-34-32-50-129(126)131)282-216(358)164-61-46-84-300(164)226(368)162(106-305)290-184(326)117(18)258-221(363)179(120(21)306)296-197(339)134(55-37-40-78-234)264-212(354)159(103-302)288-209(351)157(97-174(323)324)285-223(365)181(122(23)308)297-198(340)144(67-73-173(321)322)268-194(336)141(64-70-170(315)316)266-187(329)138(59-44-82-252-231(246)247)272-215(357)163-60-45-83-299(163)225(367)146(75-86-372-26)274-218(360)175(112(10)11)291-169(314)98-235/h28-34,47-52,99-101,107-123,132-164,175-182,253-254,301-309H,27,35-46,53-98,102-106,232-235H2,1-26H3,(H2,236,310)(H2,237,311)(H2,238,312)(H2,239,313)(H,248,255)(H,256,353)(H,257,359)(H,258,363)(H,259,342)(H,260,325)(H,261,335)(H,262,348)(H,263,347)(H,264,354)(H,265,334)(H,266,329)(H,267,328)(H,268,336)(H,269,343)(H,270,349)(H,271,344)(H,272,357)(H,273,362)(H,274,360)(H,275,337)(H,276,330)(H,277,338)(H,278,355)(H,279,331)(H,280,345)(H,281,346)(H,282,358)(H,283,364)(H,284,361)(H,285,365)(H,286,332)(H,287,333)(H,288,351)(H,289,350)(H,290,326)(H,291,314)(H,292,341)(H,293,366)(H,294,356)(H,295,327)(H,296,339)(H,297,340)(H,298,352)(H,315,316)(H,317,318)(H,319,320)(H,321,322)(H,323,324)(H,369,370)(H4,240,241,249)(H4,242,243,250)(H4,244,245,251)(H4,246,247,252)/t115-,116-,117-,118-,119-,120+,121+,122+,123+,132-,133-,134-,135-,136-,137-,138-,139-,140-,141-,142-,143-,144-,145-,146-,147-,148-,149-,150-,151-,152-,153-,154-,155-,156-,157-,158-,159-,160-,161-,162-,163-,164-,175-,176-,177-,178-,179-,180-,181-,182-/m0/s1
InChI Key
QAZMZRFPKMUTRH-ZXFLINLVSA-N
Canonical SMILES
CC[C@H](C)[C@@H](C(=N[C@@H](CCCCN)C(=N[C@@H](CCC(=O)O)C(=N[C@@H](CC(C)C)C(=N[C@@H](CC(=N)O)C(=N[C@@H](CCC(=O)O)C(=N[C@@H](CCCNC(=N)N)C(=N[C@@H](Cc1c[nH]c2c1cccc2)C(=N[C@@H](CCCNC(=N)N)C(=N[C@@H](CO)C(=N[C@@H](CC(C)C)C(=N[C@@H](CCC(=N)O)C(=N[C@@H](CCC(=N)O)C(=N[C@@H](CC(C)C)C(=N[C@@H](C)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CO)N=C([C@H](CC(=N)O)N=C([C@H](Cc3ccccc3)N=C([C@H]([C@@H](C)O)N=C([C@H](C)N=C([C@H](C(C)C)N=C([C@H]([C@@H](C)O)N=C([C@H](Cc4cnc[nH]4)N=C([C@H](C(C)C)N=C([C@H](CCSC)N=C([C@H](CC(C)C)N=C([C@H](CCCNC(=N)N)N=C([C@H](C)N=C([C@H](CO)N=C([C@H](CCCCN)N=C([C@H](Cc5c[nH]c6c5cccc6)N=C([C@@H]7CCCN7C(=O)[C@H](CO)N=C([C@H](C)N=C([C@H]([C@@H](C)O)N=C([C@H](CCCCN)N=C([C@H](CO)N=C([C@H](CC(=O)O)N=C([C@H]([C@@H](C)O)N=C([C@H](CCC(=O)O)N=C([C@H](CCC(=O)O)N=C([C@H](CCCNC(=N)N)N=C([C@@H]8CCCN8C(=O)[C@H](CCSC)N=C([C@H](C(C)C)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O
1. Tat peptide-calmodulin binding studies and bioinformatics of HIV-1 protein-calmodulin interactions
Peter McQueen, Lynda J Donald, Thach N Vo, Dung H Nguyen, Heather Griffiths, Shaheen Shojania, Kenneth G Standing, Joe D O'Neil Proteins. 2011 Jul;79(7):2233-46. doi: 10.1002/prot.23048. Epub 2011 May 10.
The human immunodeficiency virus type 1 (HIV-1) genome encodes 18 proteins and 2 peptides. Four of these proteins encode high-affinity calmodulin-binding sites for which direct interactions with calmodulin have already been described. In this study, the HIV-1 proteome is queried using an algorithm that predicts calmodulin-binding sites revealing seven new putative calmodulin-binding sites including residues 34-56 of the transactivator of transcription (Tat). Tat is a 101-residue intrinsically disordered RNA-binding protein that plays a central role in the regulation of HIV-1 replication. Interactions between a Tat peptide (residues 34-56), melittin, a well-characterized calmodulin-binding peptide, and calmodulin were examined by direct binding studies, mass spectrometry, and fluorescence. The Tat peptide binds to both calcium-saturated and apo-calmodulin with a low micromolar affinity. Conformational changes induced in the Tat peptide were determined by circular dichroism, and residues in calmodulin that interact with the peptide were identified by HSQC NMR spectroscopy. Multiple interactions between HIV-1 proteins and calmodulin, a highly promiscuous signal transduction hub protein, may be an important mechanism by which the virus controls cell physiology.
2. Response of Terahertz Protein Vibrations to Ligand Binding: Calmodulin-Peptide Complexes as a Case Study
Bhagyesh Varvdekar, Akshay Prabhakant, Marimuthu Krishnan J Chem Inf Model. 2022 Apr 11;62(7):1669-1679. doi: 10.1021/acs.jcim.1c01344. Epub 2022 Mar 21.
Terahertz vibrations are sensitive reporters of the structure and interactions of proteins. Ligand binding alters the nature and distribution of these collective vibrations. The ligand-induced changes in the terahertz protein vibrations contribute to the binding entropy and to the overall thermodynamic stability of the resultant protein-ligand complexes. Here, we have examined the response of the low-frequency (below 6 terahertz) collective vibrations of the calcium-loaded calmodulin (CaM) to binding to five different ligands, both in the presence and absence of water, using normal-mode analysis and molecular dynamics simulations. A comparison of the vibrational spectra of hydrated and dry systems reveals that protein-solvent interactions stiffen the terahertz protein vibrations and that these solvent-coupled collective vibrations contribute significantly to the hydration-sensitive variation in the vibrational entropy of CaM. In the absence of water, the low-frequency vibrations of CaM are stiffened by ligand binding. On the contrary, the number and the cumulative vibrational entropy of low-frequency vibrational modes (ω < 200 cm-1) of the hydrated CaM are increased noticeably after binding to the peptides, indicating binding-induced softening of collective vibrations of the protein. Although the calculated and experimental binding affinities of the chosen complexes correlated reasonably well, no systematic correlation was observed between the protein vibrational entropy and the binding affinity. The results underscored the importance of the interplay of protein-ligand and solvent interactions in modulating the low-frequency vibrations of proteins.
3. Theoretical-experimental studies of calmodulin-peptide interactions at different calcium equivalents
Alejandro Sosa-Peinado, Erika León-Cruz, Isabel Velázquez-López, Deyamira Matuz-Mares, Patricia Cano-Sánchez, Martin González-Andrade J Biomol Struct Dyn. 2022 Apr;40(6):2689-2700. doi: 10.1080/07391102.2020.1841679. Epub 2020 Oct 30.
We study the CaM-peptide interactions for four CaM-related peptides with different calcium equivalents, using the hCaM-M124C-mBBr biosensor and Molecular Dynamics (MD). Due to the high sensitivity of the biosensor, we were able to calculate five Kds based on the number of calcium equivalents for each peptide, showing a directly proportional relationship between the degree of calcium saturation and the increased affinity for the Calspermin, nNOS, and skMLSK peptides; while the CaV1.1 peptide has a degree of affinity independent of the number of calcium equivalent. On the other hand, the MD studies were designed based on the experimental results; I) visualizing the effect of the gradual elimination of calcium in Holo-CaM and II) analyzing the CaM-Peptide complexes with and without calcium. We observe that the gradual addition of calcium increases the flexibility of Holo-CaM. Concerning CaM-Peptide complexes, it presents differences in both the ΔGT and the RMSD. These results demonstrate the importance of the use of biosensors and the power of MD to make inferences in systems such as CaM-peptide complexes.
Online Inquiry
Verification code
Inquiry Basket