1. Assessment of the European flounder responses to chemical stress in the English Channel, considering biomarkers and life history traits
Célie Dupuy, et al. Mar Pollut Bull. 2015 Jun 30;95(2):634-45. doi: 10.1016/j.marpolbul.2014.11.033. Epub 2014 Dec 8.
A multi-biomarker approach was developed to evaluate responses of European flounder (Platichthys flesus) in three contrasted estuaries over the English Channel: the Canche (pristine site), Tamar (heavy metals and PAHs contamination) and Seine (heavily pollution with a complex cocktail of contaminants). The condition factor and several biomarkers of the immune system, antioxidant enzymes, energetic metabolism and detoxification processes were investigated in young-of-the-year (0+) and one-year-old (1+) flounder. Results underlined the difference between the pristine site and the Seine estuary which showed a lower condition factor, a modulation of the immune system, a higher Cytochrome C oxidase activity, and an up-regulation of BHMT expression. The moderate biomarker responses in the Tamar fish could be linked to the specific contamination context of this estuary. Flounder life history traits were analyzed by otolith microchemistry, in order to depict how the fish use their habitat and thus respond to chemical stress in estuaries.
2. Histopathological lesions and DNA adducts in the liver of European flounder (Platichthys flesus) collected in the Seine estuary versus two reference estuarine systems on the French Atlantic coast
Jérôme Cachot, et al. Environ Sci Pollut Res Int. 2013 Feb;20(2):723-37. doi: 10.1007/s11356-012-1287-0. Epub 2012 Nov 17.
An epidemiological survey was conducted in the Seine estuary and in two smaller and relatively preserved estuaries on the French Atlantic coast in order to estimate the occurrence of liver lesions in European flounder, Platichthys flesus, and also to seek putative risk factors for the recorded pathologies. Four hundred and seventy-eight fish of both sexes and of different size ranges were sampled in the three studied areas, 338 of which in the Seine estuary. All fish were examined for histopathological liver lesions, while DNA adducts and otoliths were analyzed on a subsample. Five categories of hepatic lesions were recorded with the following prevalence for the Seine estuary: 36.7 % inflammations, 8 % parasites (mainly encysted nematodes), 6.5 % foci of cellular alteration (FCA), 5.3 % foci of necrosis or regeneration (FNR), and 1.5 % tumors. Inflammation occurrence increased according to age, contrary to parasitic infestations and FCA which were more prevalent in young fish, notably those of <1 year old (group 0). Tumors were only observed in females of more than two winters. Females exhibited a higher prevalence of tumors (3.0 %) and FCA (6.5 %) than males (0 and 2.6 %, respectively). Parasitic and infectious lesions and FNR were equally distributed in males and females. The prevalence of FNR was also shown to vary according to sampling season, with significantly more occurrences of liver necrosis in the fish collected in summer than in spring. Spatial differences were observed with a higher occurrence of encysted parasites in flounders from the upper Seine estuary, while inflammations predominated in flounders living downstream. Temporal trends were also noted, with an increased prevalence of parasitic infestations, inflammations, and FCA in the 2002-2003 period in comparison to the 1996-1997 one. The three flounder populations from the Seine estuary (Normandy), Ster estuary (Brittany), and Bay of Veys (Normandy) showed different spectra of hepatic lesions. Flounders from the Bay of Veys had relatively few liver lesions as compared to flounders from the two other estuaries. Flounders from the Ster estuary exhibited the highest prevalence of parasites (37.2 %) and inflammations (51.1 %). Finally, FCA and liver tumors occurred at very similar levels in both flounder populations from the Seine and the Ster estuaries. Group 0 flounders inhabiting the upper Seine estuary were more prone to parasitic and pre-neoplastic hepatic lesions and had higher levels of liver DNA adducts than the older ones living downstream. It was postulated that group 0 European flounders may serve as valuable bioindicators for assessing the quality of estuarine waters and the health status of euryhaline fish populations.
3. Responses of the European flounder Platichthys flesus to the chemical stress in estuaries: load of contaminants, gene expression, cellular impact and growth rate
Estérine Evrard, Alain Devaux, Sylvie Bony, Thierry Burgeot, Ricardo Riso, Hélène Budzinski, Marie Le Du, Louis Quiniou, Jean Laroche Biomarkers. 2010 Mar;15(2):111-27. doi: 10.3109/13547500903315598.
European flounder responses to the chemical stress were assessed by a comparative approach on four estuaries displaying contrasted patterns of contamination. The contamination typology of the estuaries was investigated by individual measurements of contaminants in fish. Molecular and physiological responses were studied by gene expression, genotoxicity, neurotoxicity and growth rate. Fishes in contaminated estuaries were characterized by high levels of bioaccumulated contaminants, slow energetic metabolism and reduced growth rate, in contrast to the fish responses in the reference site. A seasonal effect was highlighted for contaminated flounder populations, with high PCB levels, high genotoxicity and elevated detoxification rate in summer compared with winter.